

Discussion Mitochondrial functions and Nutrition

Masaaki TOYOMIZU, PhD

Animal Nutrition

Graduate School of Agricultural Science TOHOKU University, Sendai, Japan

è

Mitochondria

4

History of key findings

每 人 西 当

Respiratory enzyme (Warburg) 1912 ATP from muscle (Friske & Subabaw) 1929 1930s TCA cycle (Krebs and others) 1951 **OXPHOS:** ATP synthesis driven by electron tranfer to oxygen (Lehninger) Heat production in BATmitochondria (Nicholls) 1974 1978 Chemiosmotic theory (Mitchell) 1985 UCP1: themogenesis(Himms-Hagen) 1997- ATP synthase (Boyer) UCP2 (Warden); UCP3(Boss); UCP4 Functions of UCPs (Brand, Skulachev, 2000-Goglia and Ricquier)

Main physiological functions of mitochondria

Oxidative phosphorylation { coupling 📥 uncoupling

Adapted from Lehninger's F Biochemistry, 2rd ed.

Oxidative phosphorylation in mitochondria (STATE 3)

ADP Absent: Phosphorylation does not occur. (STATE 4)

Mitochondrial matrix

Uncoupler and Uncoupling protein

ISEP 2007 France_Vichy_9>13 Sept.

210 INTERNATIONAL SYMPOSIUM ON ENERGY AND PROTEIN METABOLISM AND NUTRITION

In this section

#O3 <u>Effects of</u> a diet enriched in <u>trans fatty acids</u> (trans MUFA) on <u>muscle mitochondrial functions</u> and development of insulin resistance in rodents Tardy et al, INRA, France

Wistar rats (400g)

<u>fed different fat sources</u>: oleic acid :C18:1-9 *cis*, OLE elaidic acid :C18:1-9 *trans*, ELA vaccenic acid :C18:1-11 *trans*, VAC

4% of total energy for 8 wks

OXPHOS capacities glutamate, malate +succinate Enzyme activities ROS production

C18:1-9		C18:1-11
cis	trans	trans

<u>Results w</u>	<u>ith muscle mit</u>	<u>ochondria</u>
State 3	214 = 225	204
State 4	55 = 51	50
ATP	656 > 479	499
P/O	3.06 > 2.21	2.66

		C18:1-9		C18:1-11	
		cis	<i>†1</i>	rans	trans
Re	sults	(cis-fe	<u>d)</u>	(tr	rans-fed)
S	tate 3	214	=	225	204
S	tate 4	55	=	51	50
	ATP	656	>	479	499
	P/0	3.06	>_	2.21	2.66
				dec	rease

Reasons:

 could be from uncoupling
may be the possibility of reduced integrity of the ATPase #05 <u>Relationships between hepatic mitochondrial function and</u> <u>residual feed intake</u> in growing beef calves Lancaster et al, Texas A&M Univ., Washington State Univ., Ohio State Univ., USA

Two atvaina' askess	
i wo strains caives	
Angus heifers (n=29; BW=256kg)	E
Santa Gertrudis steers	
(n=119; initial BW=308.4 kg)	Gro
Growing calves with low and	
high Residual feed Intake	Fina
(RFT) were selected	
	IAD
after feeding for 70 d	

Exn 1/2	Angus heifers				
Group	Low RFI	High RFI	SE		
Final BW, kg	326	322	9		
ADG, kg/d	1.31	1.33	0.05		
DML ka/d	ess 8.94 ^a	10.32 ^b	0.33		

Mitoc

Conclusion: These data suggest that ADP may have greater metabolic control of mitochondrial respiration in calves with low RFI (more efficient)

Gordo

differences in metabolic rate between mammals of different mass.

#P10 <u>Variation in animal energy expenditure and mitochondrial</u> <u>function and protein expression</u> <u>(among Angus, Holstein, Wagyu)</u> Michal et al, Washington State Univ., USA

#PO8 <u>Expression of uncoupling proteins and mitochondrial activity</u> are <u>dependent on muscular fibre type</u> in rabbits and chickens Joubert et al, INRA, France

Oxidation of proteins, DNA and lipids

#004 Up-regulation or activation of avian UCP attenuates mitochondrial ROS production and oxidative damage in broiler chickens exposed to acute heat stress Mujahid et al, Tohoku Univ Japan.

#P09 Regulation of mitochondrial and tissue oxidations by <u>thyroid</u> <u>hormones</u> in chicken muscle

Collin et al, INRA, France; Katholieke Univ. Leuven, Belgium

#P09 Regulation of mitochondrial and tissue oxidations by thyroid hormones in chicken muscle

Collin et al, INRA, France; Katholieke Univ. Leuven, Belgium

Chicken, 1-wk of age

Control

MMI: methimazole 1 g/kg feed thyroid grand inhibitor T₃: triiodothyronine 1 mg/kg feed for 3 wks

AMPK assay Oxidative stress

#PO9 Regulation of mitochondrial and tissue oxidations by thyroid hormones in chicken muscle Collin et al, INRA, France; Katholieke Univ. Leuven, Belgium

