

Relationship between intake of metabolizable energy and chewing index of diets fed to pregnant ewes

Presenting author: Mette Vestergaard-Nielsen

Co-authors:

Elisabet Nadeau, Bo Markussen, C. Helander, M. Eknæs, Å. Randby, P. Nørgaard

Introduction

- Feed intake, especially the last 4-6 weeks of pregnancy, are important for ewe and lambs
- Nutrition during late pregnancy affects
 - ewe colostrum production and BCS (Robinson et al. 1999)
 - lamb birth weight (Dwyer et al 2003)
 - lamb survival (Holst et al. 1986)
 - lamb carcass composition (Daniel et al 2007)
- Feed intake models can help predict feed requirements and intake

Introduction

- Nørgaard and Mølbak (2001) linear model describing net energy intake as a function of the ration chewing index (CI) in Scandinavian cattle
- The model was valid for very different types of production, and could possibly be modified to fit ewes in the last 4 weeks before parturition

Nørgaard and Mølbak 2001

- NEI= intercept -slope CI
- The model is empirical based on a meta-analysis
- The intercept was interpreted as the theoretical maximum intake capacity for cattle
- The slope represents decrease in energy intake with increasing CI of the ration
- There was direct proportionality between slope and squared intercept slope=k*Intercept²

Objective

- To study the relationship between metabolizable energy (ME) intake and the chewing index (CI) of the rations for pregnant ewes
- To study proportionality between the slopes and squared intercepts

Data

- Feeding experiments: 4 from Skara, Sweden, 1 from Ås, Norway.
- 107 ewes, the last 4 weeks before parturition
- A total of 14 dietary treatments
- Restricted concentrate allocation (0-0.8 kg), and *ad lib* silage
 - 2 experiments included 1 treatment with TMR

Faculty of Health and Medical Sciences

Estimation of CI and ME

- Estimation of CI according to the NorFor method (Nørgaard et al. 2011)
- The NorFor CI corrected (Nørgaard et al. 2011)
 - For BW: 625/BW
 - Intake of forage NDF: deviations from 0.7 kg NDF in % of BW
- Estimation of ME content of the feeds
 - Forage: in vitro digestibility (VOS) (Lindgren 1979, 1983, 1988).
 - Concentrates: according to Axelsson (1941)
 - 1 experiment: *in vivo* digestibility, for concentrate and forage (Van Es 1978)

Faculty of Health and Medical Sciences

Data collected

• Mean DMI, BW and MEI of the ewes

DMI (kg Dl	DMI (kg DM/day)		lJ/day)	BW (kg)		
mean	SD	mean	SD	mean	SD	
2.5	0.41	29	5.3	100	11.0	

• Mean forage characteristics and chewing index of the rations

Forage characteristics per kg DM Ration CIcor								n CIcor
	ME _f	, МЈ	NDF _f , g		CP _f ,g		CIcor (min/MJ ME)	
Rations	mean	SD	mean	SD	mean	SD	mean	SD
	11.3	1.01	500	57.6	159	27.4	27.2	5.10

Mathematical method

$$MEI_{i(,j)} = intercept_j + b_j * CI_{i(,j)} + \varepsilon_{i(,j)}$$

(Equation 1)

Where $MEI_{i(,j)}$ is the metabolizable energy intake (MJ ME/day) of the individual ewe (*i*) in week within experiment (*j*), **intercept**_{*j*} is the intercept (MJ ME/day) of week within experiment (*j*), **b**_{*j*} is the slope ((MJ ME/day)²/(min/day)) of week within experiment (*j*), $CI_{i(,j)}$ is the chewing index (min/MJ ME) from the individual ewe (*i*) in week within experiment (*j*), and $\varepsilon_{i,(j)}$ is the error of the regression of the individual ewe (*i*) in week within experiment (*j*).

 $\mathbf{b}_{i} = q + k^{*}$ intercept_i² + ε_{i}

(Equation 2)

Where **b**_j is the slope of week within experiment (*j*), **intercept**_j² is the squared intercept of week within experiment (*j*), and ε_j is the error of the regression in week within experiment *j*, q is the possible intercept and k is the slope of the linear function.

Statistical Method

- Linear mixed effects modelling with random effect of week within experiment
 - Effect of model variables: Wald test
 - Random variation effect on slope and intercept: Likelihood ratio test
 - Linearity of the model: standardized residual-plot, qq-plot
- How well the models fit to data: R²
- Direct proportionality using linear regression: Wald test

UNIVERSITY OF COPENHAGEN

Faculty of Health and Medical Sciences

Visualization

Chewing index (min per MJ ME)

Faculty of Health and Medical Sciences

Results

• Intercept and slope of the linear regression MEI= Intercept +b*CI for pregnant ewes.

Parameters	Estimates	SE	P-value
Intercept	42	2.00	40 001
(MJ ME/day)	43	3.99	<0.001
b	-0.52	0.12	<0.001
((MJ ME/day)^2/(min/day))	-0.52	0.12	<0.001

• There were significant effects of **week** before parturition and **experiment** on both intercept and slope

Results

• Evaluation plots of MEI=Intercept+b*CI pregnant ewes.

Results

- Direct proportionality using linear regression
- P-value for this intercept: 0.17

Conclusion

- ME intake of pregnant ewes during the last four weeks of pregnancy decreases linearly at increasing dietary chewing index.
- The slope values appear proportional with the squared intercepts values.
- The model proposed could be relevant also for pregnant sheep.
- However, the potential prediction power of the model was low and the model needs further improvements.

Sted og dato Dias 16

Research questions

- Can ME intake of similar groups of nursing ewe fed different types of forage be described as a linear function of the CI of the ration?
- Does the estimated slope from different experiments vary from each other?
- Do the estimated intercept from different experiments vary from each other?
- Is there a pattern in the distribution of residuals so the model has to be rejected?
- Can the estimated slope values from different experiments be related to the squared intercept as negatively proportional?
- Is the intake most likely regulated by metabolically and physical constrain EN9 most only likely only physical constraint? Try to estimate if the maximal CI<2*CTmax/NE0, and if the NE>1/2NE0
- How well does the model fit the data (r²)?

Dias nummer 17

EN9constraints or most likely only by physical constraint?

How are you going to use these questions? Elisabet Nadeau, 08/06/2014