

EAAP 2014 Copenhagen, Denmark 25 - 29 August 2014

65th annual meeting of the European Federation of Animal Science

In vitro incubation of dairy cow diets: 1. Degradability, total gas and methane yield

Maccarana L.¹, Cattani M.¹, Tagliapietra F.², Schiavon S.², Hansen H.H.³, Bailoni L.¹

¹Department of Comparative Biomedicine and Food Science, BCA (Italy) ²Department of Agronomy, Food, Natural resources, Animals and Environment, DAFNAE (Italy) ³Department of Large Animal Science (Denmark)

Methane emissions

✓ CH₄ is one of fermentation gases (CO₂, CH₄ and VFA)
 → loss of gross energy intake to the animal, quantified around 2-12% (Johnson and Johnson, 1995)

✓ CH_4 is also considered an atmospheric greenhouse gas (GHG: CO_2 , CH_4 , N_2O , and O_3) → greenhouse effect & climate changes

Assessments of CH₄ emissions vary considerably depending on the references and countries.

Objectives

To evaluate in vitro

AIM

- Degradability
- ~ Total gas production
- ~ Methane yield

of diets for dairy cows <u>actually</u> used in the Veneto region, in order to estimate their range of variation on methane emission

Diets

 ✓ A Reference Diet (RD) → representative of dairy cow diets commonly used in the Veneto region

 Other 7 diets were formulated changing the proportions of CP, NDF and lipids, within the limits of viable:

- ~ Low Protein (LP)
- ~ High Protein (HP)
- ~ Low Fibre (LF)

MATER

- ~ High Fibre (HF)
- ~ Low Lipid (LL)
- ~ High Lipid, fat supplement (HLF) (calcium soaps of palm)
- High Lipid, extruded oilseeds (HLO)

Chemical composition (g/kg DM) of 8 diets

	RD	LP	HP	LF	HF	LL	HLF	HLO
СР	152	117	187	152	152	152	152	152
NDF	370	370	370	331	448	370	370	370
ADF	186	177	200	149	255	186	189	192
ADL	28	26	33	20	43	28	28	28
Lipids	33	33	33	33	33	22	55	55
Starch	271	333	203	329	151	282	246	231
NFC	393	434	350	438	307	403	372	371
Ash	52	46	60	46	60	52	52	52
GE, MJ/Kg DM	18.6	18.5	18.7	18.7	18.7	18.4	19.1	19.1
ME _{TDN,} MJ/kg DM	12.1	12.2	11.8	12.7	11.1	11.8	12.7	12.7

Low Protein (LP) and High Protein (HP)

Low Fibre (LF) and High Fibre (HF)

1

MATERIAL &

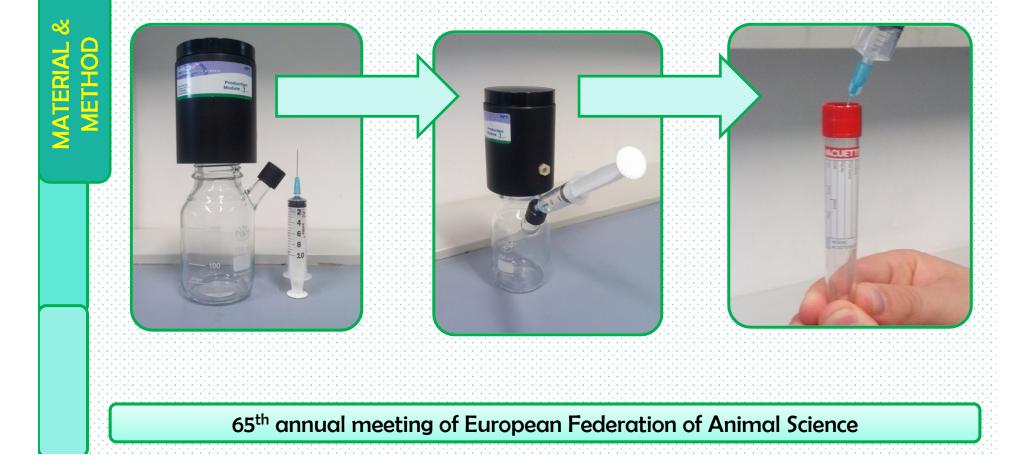
Low Lipid (LL) and High Lipid: fat supplement: calcium soaps of palm (HLF) and High Lipid: extruded oilseeds (HLO)

Experimental design

		<u></u>		
Diets	8			
Incubation times	2			
Runs for each incubation time	2			
Replications of diets for run	5			
Total bottles	160			
Blanks	20			
Temperature, °C	39.0			
Feed sample, g	1.0 ± 0.010			
Buffer, mL	100			
Rumen fluid, mL	50			

∞∀

MATERI


Automated GP system: Ankom® RF

- Kit of 50 bottles (317 ml), with spout and screw cap with septum puncture-proof, equipped with:
 - ~ a pressure detector
 - ~ an open-closed value for gas venting at 6.8 KPa
- All bottles are wireless connected to a PC
 Pressure values inside the bottles are recorded by PC every minute

Gas samples collection

 9 mL of fermentation gas were collected with a gastight syringe and injected into a Vacuette®
 An aliquot of 10 µL was analyzed for CH₄ by GC

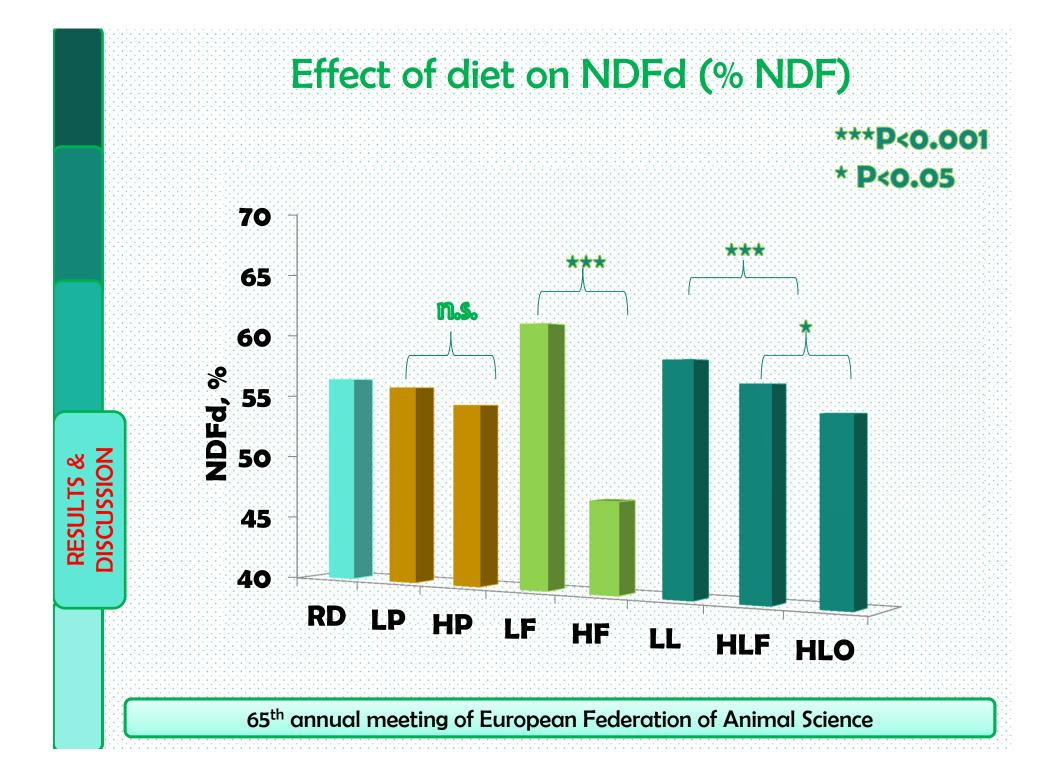
Computations

 NDF (NDFd, %) and true dry matter (TDMd, %) degradability (Goering and Van Soest, 1970)

Gas production (GP, mL/g DM) was calculated by a conversion of psi into mL (Lopez *et al.*, 2007)

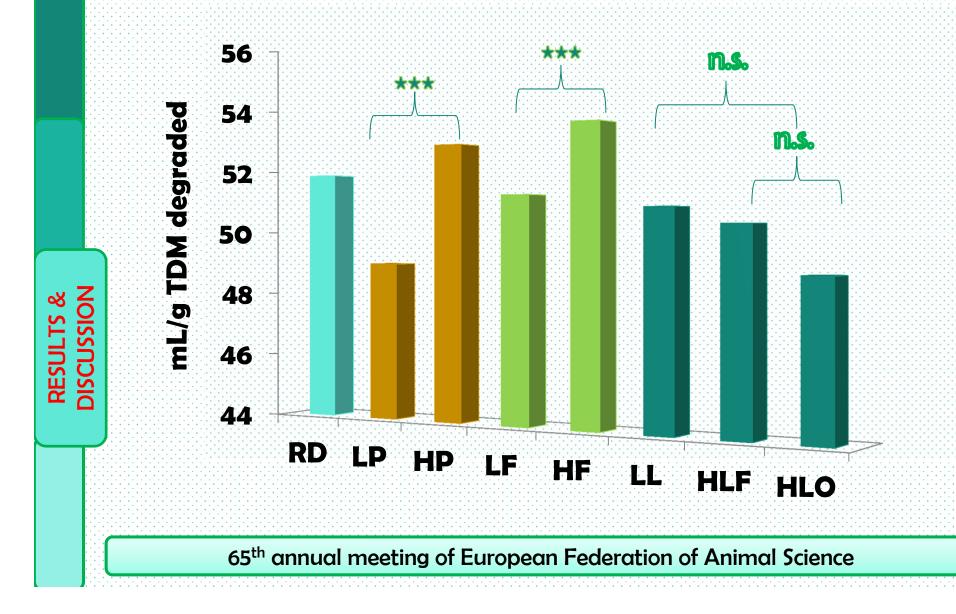
 Total CH₄ production = CH₄ measured in bottle headspace × [(bottle headspace (257 mL) + GP mL)] CH₄ loss was calculated according to Ramin and Huhtanen (2012)

Statistical analysis


✓ ANOVA (PROC GLM, SAS):

- ~ Diet (1-8)
- ~ Incubation time (24 and 48 h)
- ~ Run within incubation time (1-2)

Contrasts:


- ~ LP vs HP diet \rightarrow effect of CP level
- ~ LF vs HF diet \rightarrow effect of NDF level
- ~ LL vs (HFL + HOL)/2 \rightarrow effect of lipid level
- ~ HLF υs HLO \rightarrow effect of lipid source

Effect of diet on CH₄ (mL/g TDM degraded)

***P<0.001

Take home messages

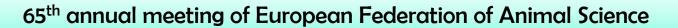
- The amount of *in vitro* CH₄ produced was comparable to that reported by the literature
- The effects due to the CP, NDF and lipids were significant and comparable to other studies
- The magnitude of these effects is small in actual diets for lactating dairy cows

 In addition to N excretion, low-protein diets should also reduce CH₄ emission without negative effects on degradability of diet

This effect should be more carefully considered in vivo

Acknowledgements

 The present study was financed by "ARCHAEA" Project: "Feeding strategies to reduce methane emissions from dairy cows", Veneto Region Rural Development Programme (RDP) 2007-2013



THANKS FOR YOUR ATTENTION

FOR MORE INFORMATION:

laura.maccarana@studenti.unipd.it

Ingredients (g/kg DM) of 8 diets

	RF	LP	HP	LF	HF	LL	HLF	HLO
Corn silage	351	375	281	430	-	351	351	351
Alfalfa hay	89	66	156	23	134	89	89	89
Ryegrass hay	47	43	52	-	231	47	52	56
Meadow hay	47	47	52	-	227	47	52	60
Corn meal	205	258	147	228	152	218	182	160
Barley meal	119	160	90	171	92	122	100	100
Soybean meal	113	27	188	119	126	126	121	18
Whole soybean	-	-	-	-	-	-	-	68
Extruded soybean	-	-	-	-	-	-	-	68
Extruded flaxseed	29	24	34	29	38	-	29	29
Fat supplement	-	-	-	-	-	-	24	-

8

E N N

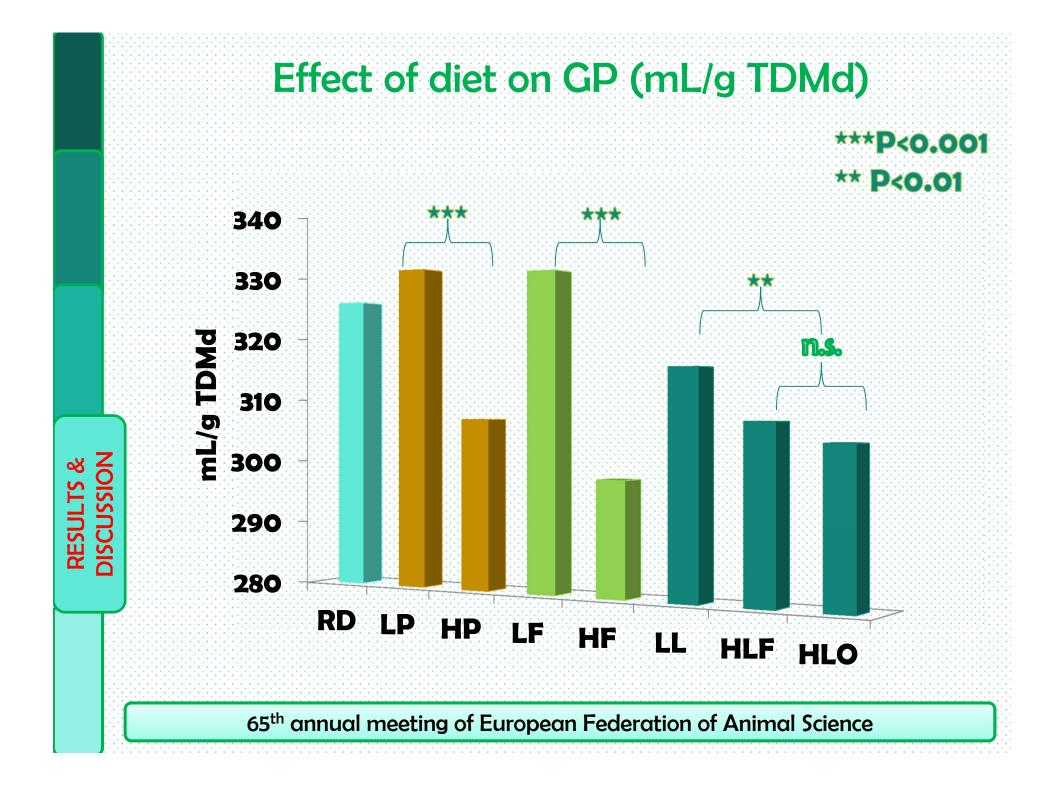
MA

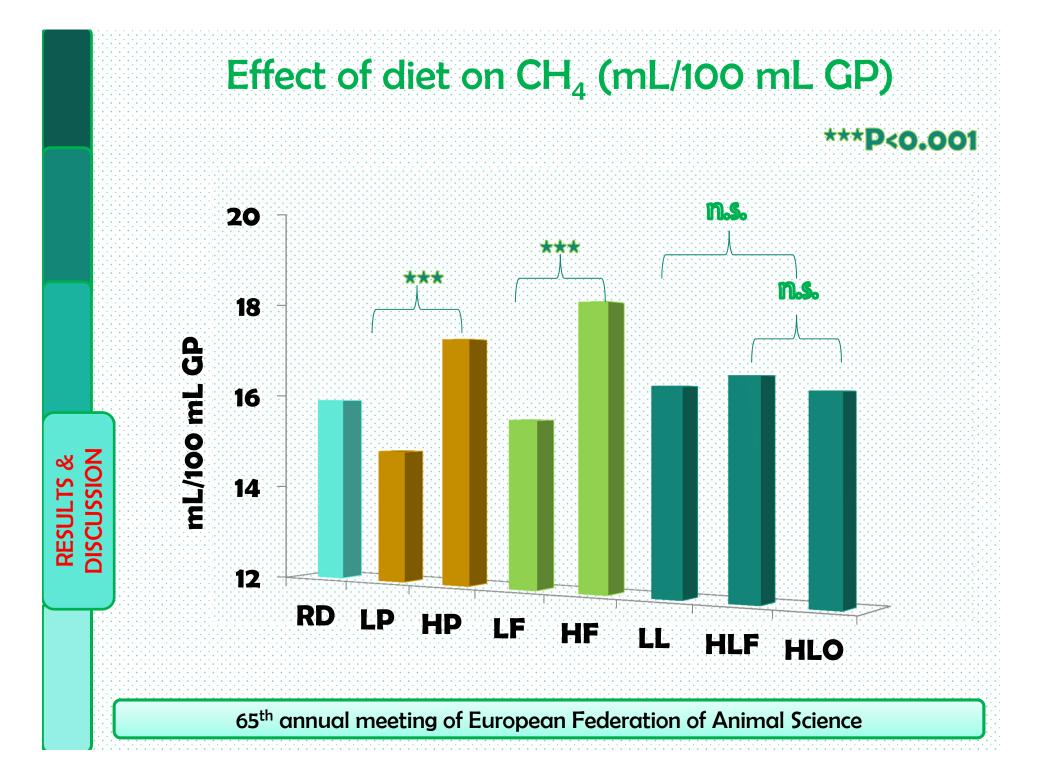
Incubation procedures

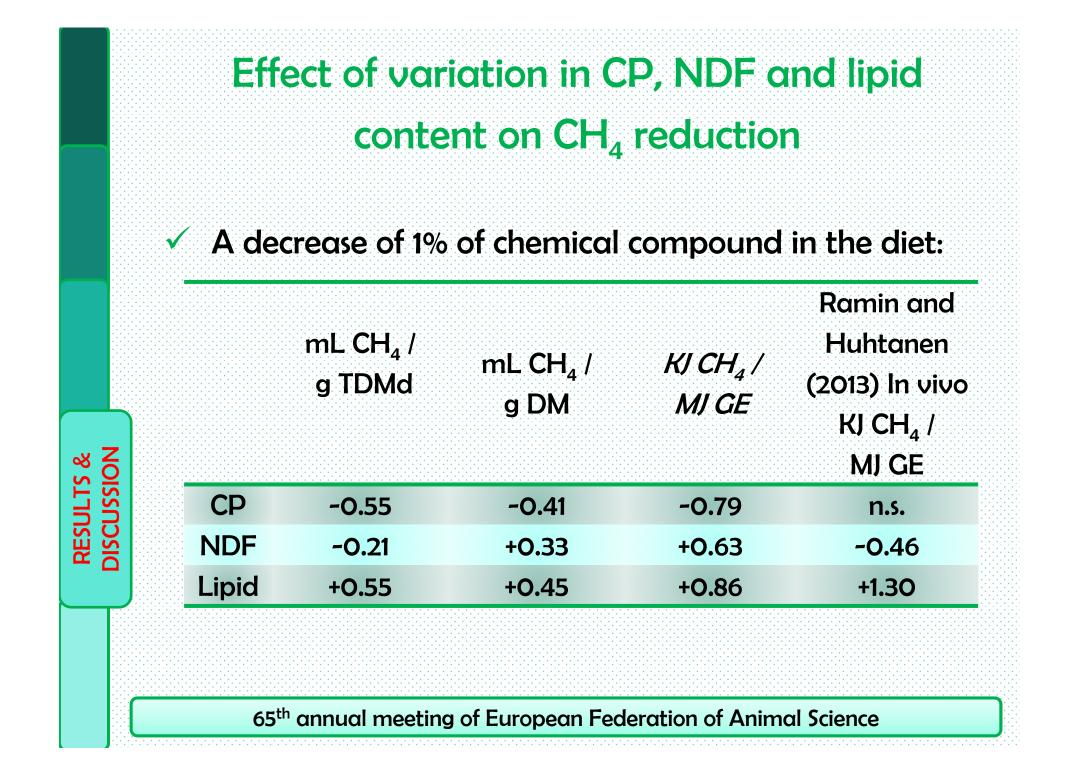
- Rumen fluid was collected by an esophageal probe
- Buffer solution was prepared according to Menke and Steingass (1988)

Gas chromatograph

- Model 7820A GC system, Agilent Technologies
- Flame ionization detector


 \checkmark


 \checkmark


30 m stainless steel column, GS-CarbonPLOT, Agilent Technologies

Gas carrier: Hydrogen, flow rate: 1.6 ml/min

Isothermal oven temperature: 40°C

