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Background

Dynamic traits or longitudinal traits:

-Change over time during developmental process of life

-Examples: growth traits (e.g., height, boby size), milk
production, drug responses

-Phenotype measurements at different time points are often correlated

- New automatic phenotyping -> phenotypic measurements
with more time-points



This presentation is based on articles:

Li Z, Hallingback HR, Abrahamsson S, Fries A, Anderson B, Sillanpaa MJ,
Garcia-Gil MR (2014) Functional multi-locus QTL mapping of temporal trends
in Scots pine wood traits. (Submitted for publication)

Li Z, Sillanpaa MJ (2013) A Bayesian non-parametric
approach for mapping dynamic quantitative traits.
Genetics 194: 997-1016.

Sillanpaa MJ, Pikkuhookana P, Abrahamsson S, Kniirr T, Fries A, Lerceteau E,
Waldmann P, Garcia-Gil MR (2012) Simultaneous estimation of multiple
guantitative trait loci and growth curve parameters through hierarchical
Bayesian modeling. Heredity 108: 134-146.
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QTL analysis of dynamic traits

* Traditional approach: single trait mapping
- analyze single time point

- find loci affecting the trait at a particular
developmental stage

« Newer approach: (Multiple-trait) functional mapping
- Ma et al. (2002, Genetics), Wu and Lin (2006, Nat. Rev. Genet.)
- jointly analyze all repeated measurements of traits

-understand how loci are influencing the whole
developmental process
- take the temporal correlation among data into account



Multi-trait= effect for each trait
(time-point)
Adjacent time points should be
more similar = smoothing
Fit smooth curve
1) to phenotypes ?

or
2) to QTL effects ?



1) To fit curve to the phenotypes

First fit curve to the phenotypes over time
*Then treat curve parameters as “traits” in QTL mapping:
*(Heuven and Janss, 2010; BMC Proc; Sillanpaa et al., 2012, Heredity)

k
.(t ) = 4 > a,b;andc;are
yl 14 .
1+ bl. exp(cl.tr) considered as three

r=l seperate latent traits

or
even simpler curve /

yi (tr) — ai +bitr + Citrz T ei,r



Two-step approach

* 1) Fit simple curve over phenotypes (time
points)

-> owh curve for each individual

e 2) Treat curve parameter as "phenotype” in
your favorite QTL mapping method (LASSO,
BLASSO, SSVS, PLINK, EMMAX,...)

1 & 2 were done simultaneously in Sillanpaa et al.
(2012; Heredity).



Data are represented as

-Phenotypes : y,, for individual i=1,...,n,
and repeated measurements k=1,...,m

-Time (hour, day, age...): t,

-Genotypes : X, for individual j=1,...,n, and
locus j=1,...,p.

I'.



Multi-level model

* Level 1: Estimate the (linear) temporal trend among the
phenotypes

iid.
2
Vie = Mo T Myl T &y Eip ™ N(O, GiO)

* Level 2: Map the trend parameters to genotypes

1i.d.

p
2
Hiy = Q +ny:8j +a,, @, ~ N(0,07)
=

Li.d.

p
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Hy =@ +inj7/j +a,, a;~ N(0,07)
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Linear mixed effect model for
longitudinal data

 We may use a two-step approach to separately estimate the equations in
level 1, and 2.

* Alternatively, it is possible to combine them in one linear mixed effects
model (LMM):

Vie = Mg T Myl + &

—(a +le],8 +a,)+(a +le]7/ +05,1)f,k+<9

] e
W e -, -
—a +at +alo+alltlk+2xy,8 +ny lk;/ +e, g, ~ N(,0;,)
Fixed intercept and Random l _
slope terms intercept and marker effects Marker-time

interaction
slope terms (stable over time)



In Li et al. (2014) , we compared

* Two-step approach: Multi-level LASSO

1) Fit simple curve to phenotypes
yvi(t,)=a,+bt + € r

*2) Use LASSO to map QTLs influencing to the intercept and
slope of the curve

* Single-step approach: Bayesian linear mixed
effect model

- all parameters are estimated simultaneosly



LASSO-regression

* Tibshirani R (1996) Regression shrinkage and selection via
the lasso. J. Royal. Statist. Soc B. 58: 267-288

p
regression coefficients in the penalty function )’ ‘,6’].‘
are f3=0. .

ﬁ: all;gmin{i(yi _180 _iﬁjxgj)z +ﬂ“i‘ﬁj

where A>0 is a tuning parameter.

* LASSO-solution is in optimum when the most



Bayesian inference

_ p(data |0) p(0)
p(0|data) = - (data)

e p(data]|0) is a likelihood
e p(0O)is a prior density
* p(data)is a normalizing constant



Priors for intercept and slope
parameters

e Flat uniform priors for fixed random intercept and slope parameters:
a, ~U(—0,0), a, ~U(-00,0)

* Normal priors for random intercept and slope parameters:

[, 0,1 |E, ~MVN(0,Z,,,).

250~ W_I(szzav)a

¥,,=L,v=L



Priors for marker effects f (or y)

* Spike and slab prior (a mixture of a normal
and point mass at zero)

Blr, ~(1- DL rN(0,6%), (r,=0,1)
p(rj |W):er (I_W)l_rja

o’ ~ Inv-Gamma(0.1,0.1).



Computation and posterior inference

« MCMC (Gibbs) sampling is used to evaluate
the posterior distribution.

* From the MCMC samples, A Bayesian false
discovery rate (BFDR) type of decision rule
was derived to identify QTLs (e.g. Ventrucci

and Scott 2011)



LASSO: uncertainty measure

 Stability selection (Meinshausen and Bithimann 2010)
-closely related to boostraping and false discovery rate control

-provides a selection probability for each marker (if probabilily is
close to 1, then we say that the marker is likely to be a QTL)

Note that the stability selection is more liberal compared to some mutiple hypothesis testing
methods achieving familiy wise error control such as bonferroni correction



Phenotype Data

The studied field test: Flurkmark
(S23F881485), located 25 km north of
Umea in northern Sweden (lat. 64°02’N,
long 20°30’E, alt 115 m a sl)

286 trees were selected for wood sampling.

They were located together in order to
minimize the environmental variation.

Wood property traits: wood density (WD),
radial and tangential fiberwidth (FWr &
FWt), fiberwall thickness (FTh), microfibril
angle (MFA), dynamic modulus of elasticity
(MOE), grain angle (GA)

Repeat measurements over 9 years during
1995-2003 (age: 7-15)
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Genotype data

* 492 progeny individuals were thus genotyped using 508 AFLP markers

e After pre-processing steps (such as filtering out some markers with low
coverage), we eventually obtained:

- AFLP data set with 273 individuals and 153 AFLP markers
(expect in GA, 451 individuals)



Results from BLMM analysis

Table 5: Description of significant QTLs mcluding, the name of the QTL-marker, the trait and dataset where 1t was found, 1ts hinkage group (LG) and posttion (Pos.)
within the linkage group, the alleles conferring and not conferring the effect respectively, QTL effect estimates for multilevel LASSO and Bayesian linear mixed effect
model (BLMM), and marker uncertamnty quantities for Bonferroni-adjusted single ordinary least squares re-estimated r-test (Single-p), covariance test (COV-p),
stability selection (SSP) and Bayesian global false discovery rates (BFDR) respectively. The primary QTL detections are marked in bold.

General QTL mfo Multilevel LASSO statistics BLMM statistics
QTL | Marker® Trait Data- | LG® | Pos. [ Alleles® | Multilevel Single-p® COV-p* | SSP* BLMM effect | BFDR®
no: set (cM) effect?
Part A. QTLs for trait means and single timepomts. For GA, MFA and MOE ranges are g:l\en for each timepomt.
1. GGG191* EWD A u. - p/a 43 kg m” 0.052 0.235 0.688" 7.7ke m” 0.040%
L GGG191* EWD S+tA | u. - p/a ns? - - 0.5kgm” 0.651
Z 0 11919 01-122° FWr S+A | 14m 11.7 |C/T 0.39 ym 0.080° 0.009* 0.664* 0.35 um 0.429
2. - FWr A | 14m - No AFLPs in the same LG.
. ! AGG142" EFWr | S+A |u - p/a 0.27 pm 0.010* <0.001* | 0.682* 0.10pm 0.624
3. AGG1427 EFWr A u. - p/a ns. - - - 0.04pm 0.690
4. TCG51* GA A u. - p/a 0.30 to 0.34° <0.001* <0.001* | 0.88-0.91* | 0.51° <0.001*
4. TCG51% GA StA | u - p/a 0.05° 1 0.902 0.187 0.07° 0.861
5. Axs 47 502° GA S+A |3m. | 406 |A/C [-041t0o-0.44° | 0.002-0.006* | <0.001* | 0.76-0.82*% | -0.52° 0.227
5. - GA A 3m. - - No AFLPs in the same LG.
Part B. QTLs for trait slopes
6. GCG64™ EP A [uw B p/a 0.23y" 0.006* 0.006* 0.908* 032y" 0.145°
6. GCG64™ EP S+A [ u = p/a ns. - - - ~0.00y" 0.978
7. TGGS™ EWD A |[u - p/a 1.0kgm™y" | 0.199° 0.215 0.712’ 1.6kem”y" | 0.047*
7. TGG57* EWD S+tA |u - p/a ns. - - - 04kegm™y' | 0.691
8. 2 10306 01-354° |LWD | S+A [1p. [4744 [A/C [32kgm”y' [ 007D 0.033* [ 0.747* 30kgm™y" | 0623
8. - LWD A 1p. = = Closest AFLP (AGC141) far away (33.6 cM)
9. 0 18350 01-393° FWr S+A | 8p. 0.0 A/G -0.02umy" | 0.160° 0.035* | 0.674* | -0.02umy* | 0.887
9. FWr A | 8p No AFLPs m the same LG.

z'The marka' type A = AFLP or S = SNP 1s shown in superscnpt aﬁer the marker name
® m = maternal LG, p = paternal LG, u = unmappable

pa

presence/absence

4 ns. =not selected by LASSO
® * = suggestive, * = significant




Summary

QTLs were detected in several traits such as early wood
density (EWD), and radial and tangential fiberwidth (FWr)

A few QTLs seem to be biological interpretable (at protein
level)

No previous longitudinal QTL analysis has been performed for
wood property traits, and no earlier results available that we
can compare with

The findings are rather hypothetical, and requires further
molecular investigations



2) To fit curve to QTL effects

* In Li and Sillanpaa (2013) , we fitted smooth curve to
QTL effects instead of phenotypes

* This is so called VARYING COEFFICIENT MODEL
which have own effect coefficient for each trait (time

point)



2) To fit curve to QTL effects

Phenotype y,t ), Individuals i=1,......,n, time points t,,......,t. (hours, days, years...)
genotype x=1, 0, -1 for AA, AB, BB

single locus model multiple loci model
v, ()= p()x; +el(t) yi{h) = ,Z:;ﬁ’(tl)xy e
yi (tz) - 'B(tz )xi + ei (tz) vi(t,) = i'gj (¢, )xz_'i +e,(2,)

(7,)= [ )x. +e.(t P
Yilte) = F)x + e ) Y6 =2 B, (1), +e(t,)
We consider the genetic effects (¢, ..., A(t,) jointly as a trend function over

time.
2
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How to model residual covariance?

yi(tl) — IB(tl)xi +ei(tl)
yi(tZ) — ﬁ(tz)xi +ei(t2)

v:.(t,) =L)X +el(t,)

If the distribution of traits is normal, the residual terms e=[e(t,), ..., e(t,)] can

be specified as e, ~ N(0, 0’X) . The covariance matrix £ describes the
temporal correlation among non-QTL (i.e., environmental) factors.

We consider two possible covariance structures (i) diagonal, and (ii) AR(1)

Diag —

—| P

1
P,

2

k-1

Jo,
1
Yo,

k=2

pz k-1

p ... p7?
D

p 1

9

0<p<l
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Parametric methods

Used when the curve of dynamic traits is simple

Model f(f) as a known parametric function

Example: logistic growth curve

Growth trajectory of

Likelihood function

Scots pine

10 20

p(Y10) =] [ N(y, | 2B.)

a k
b= {1 +bexp(ct,) }rl

Estimate parameters g,
b and ¢ by maximum

likelihood



Non-parametric methods

When the curve of dynamic traits is complicated, we cannot use any
known function to describe it

Active state probability of
mouse (Xiong et al. 2011, oat
Genetics) ozl

2p =] P P 1 2 aa &a 8a 10a 2a

Basis expansions: represent ﬂ(t) as a4plimpea; cc;mbzinaation of some b1asis
functions, B(H)=a,®,(t)+a,d,(f)++a D (1)

We choose B-spline basis functions.

Cubic B-spline bases
with 4 interior knots

£

0 - b W b owm o@® N om
=1 T T T T T _1




P-spline: penalized B-spline

*In B-splines, choosing an appropriate number of knots
is crucial:

-too few or two many knots: underfitting or overfitting
*P-spline (Eilers and Marx 1996, Stat. Sci.):

-pre-specify a relatively large number of knots

-add a difference penalty to the "likelihood” function of ,5('[) in order to
avoid overfitting

/1(0-’2 _01’1)3 + ﬁ(aq —(Z:)3 _|_..._|_/l(a,m _a,m_l)i

-In Bayesian statistics, the difference penalty is corresponding to a
random walk prior (Lang and Brezger 2004, J. Comput. Graph. Stat.)



Our Bayesian hierarchical model

p0]Y) p(Y|0) p(0)
e Posterior o Likelihood x Prior
\ 4
[ [MVN(y, By +3 x,8,.5).
i=1 i=1 '
B, =VYa,

* Prior:

- random walk prior for a: p(a | r)p(z7)= MVN(e., [ 0.27K™)IG(z? | 0.0001.0.0001).
where matrix K contains the information of the difference penalty
- non-informative priors for X, or ZAR(D:

k 1 1
P(Zpiag)“H? , OF p(ZAR(l)) OC?l<o<p<l)

=1 li



200 time points = 200 traits

MCMC estimation of parameters
of multitrait methods is SLOW!!

Thus, we need faster estimation
approaches



Computation and posterior inference

e Variational Bayes (VB): a deterministic
approximation algorithm for posterior
inference (Beal 2003, PhD thesis)

* is used to estimate the mode of the posterior
distribution and for variable selection.



Case study: mouse behavioral data

Xiong et al. (2011, Genetics), Goulding et al. (2008, PNAS)

Genotype: 89 backcross individuals, 233 SNPs distributed over
19 chromosomes.

Phenotype: active state probability. 222 repeated measurements
under a 12h:12h light:dark cycle

We applied a logit transformation (log(%)) to make the
phenotypic data more normally disributed
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Case study: mouse behavioral data

Chromoso | Location P-value
Previously analyzed by a single loci (based on

approach of Xiong et al. (2011) Wald test)

16 1 81.40 1x101!
Our Bayesian model search algorithm (151347625)

(assuming AR(1) residual covariance)

detects 3 important markers. 123 9 20.74 6x10°8
(rs6207781)

2 markers with largest effects are

located on chromosome 1 and 9, 140 10 55.93 2%10°6

respectively. This agrees with the (rs3654717)

findings in Xiong et al. (2011).

If diagonal residual covariance is
assumed, the method tends to find
many false positive signals



Case study: mouse behavioral data
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Summary

* Benefits of functional mapping:

(1)increase the power to detect QTLs by borrowing strength from

nearby time points
(2) control the false positives by incorporating the residual covariances
(3) better interpretation of the results

 Compared to other function mapping
approaches, our method is

+ fast

+ easy to use, suitable for many different types of dynamic traits

- uncertainty measure is inaccurate, due to the approximation nature of VB
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More time consuming to have
additional traits than markers
especially with AR(1)



MCMC infeasible for 200 traits
Roughly
Mouse data, 200 traits, AR(1),
VB - half an hour
Mouse data, 200 traits, Diagonal
VB - several minutes

Simulated data, 100 traits, AR (1),
VB — 15-20 minutes
Simulated data, 100 traits, Diagonal
VB- several minutes



