

EBV trend validation for survival traits from a linear nine-trait model in German dairy cattle

65th annual meeting of the European Federation of Animal Science Copenhagen, Denmark August 25-29, 2014

J.Wiebelitz^{1,2}, F.Reinhardt¹, H.Täubert¹, Z.Liu¹, M.Erbe², H.Simianer²

¹vit – Vereinigte Informationssysteme Tierhaltung w.V., 27283 Verden, Germany ²Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August-Universität, 37075 Göttingen, Germany

Introduction

- Challenges of survival data
 - Censoring
 - Strictly conditional data structure
- Advantages of linear models for genetic evaluation of survival traits
 - Low computational requirements (compared to survival analysis or threshold models)
 - Easy implementation of multiple trait models (e.g. Boettcher et al. 1999, Sewalem et al. 2007, Holtsmark et al. 2009)
- Previous analyses on national data show plausible genetic structure for survival of different lactation periods (Wiebelitz et al. 2014)
- Trend validation necessary for international evaluations (INTERBULL 2014)
- Aim: Trend validation of a linear multiple trait model

Full data set

- Excerpt from data for national genetic routine evaluation for longevity
 - 7,901,517 cows
 - 93,786 sires
 - 19,333 herds
- Editing
 - 2000 ≤ year of calving ≤ 2013
 - 500 ≤ age of first calving ≤ 1500 days
 - Only cows with all records from 1st lactation to last known lactation

Truncated data set

- Subset of full data set
- Year of truncation: 2009

Trend validation (mod. Boichard et al. 1995: INTERBULL Method III)

- Estimation of breeding values
 - Full data
 - Truncated data
- Trend validation

$$\mathbf{v} = \mathbf{1a} + \mathbf{ub} + \mathbf{t}\delta + \mathbf{e}$$

v, u: Vector of sire EBV from estimation in full, partial data set

a: Intercept

e: Vector of residual effects

 δ : Coefficient for the bias term; should not exceed 2% of σ_a

$$t_i = \sum_{j=2006}^{2013} \left(\frac{v_{ij}}{N_i} (j - j_0) \right)$$

 v_{ij} : additional number of daughters for sire i in year j

 N_i : total number of daughters on the complete data set

 j_0 : average year of calving for daughters on the partial data set

Definition of traits

- Survival (1000/0) of a period
- Missing, if animal had no chance to show survival of a period (i.e. culled or censored before)
- 70 days delay for accepting of phenotypes

Lact.	Days	Abbr.	Lact.	Days	Abbr.	Lact.	Days	Abbr.
1	0-49	B1.1	2	0-49	B2.1	3	0-49	B3.1
1	50-249	B1.2	2	50-249	B2.2	3	50-249	B3.2
1	250-n. calv.	B1.3	2	250-n. calv.	B2.3	3	250-n. calv.	B3.3

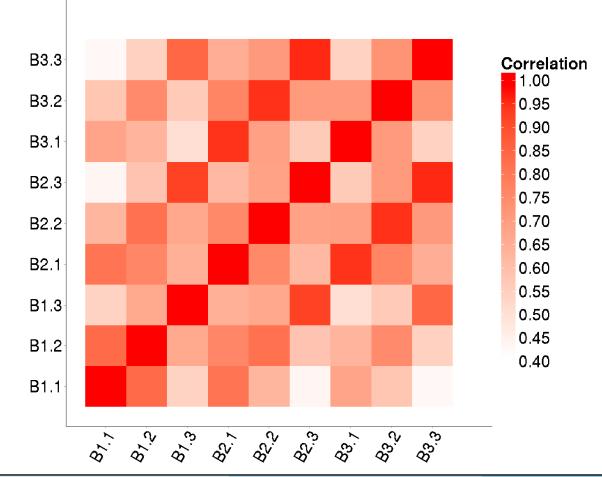
Model for estimation of EBV

$$y = Xb + Zs + e$$

Vector of observations (1000/0)

Incidence matrix for fixed effects (Herd*year)

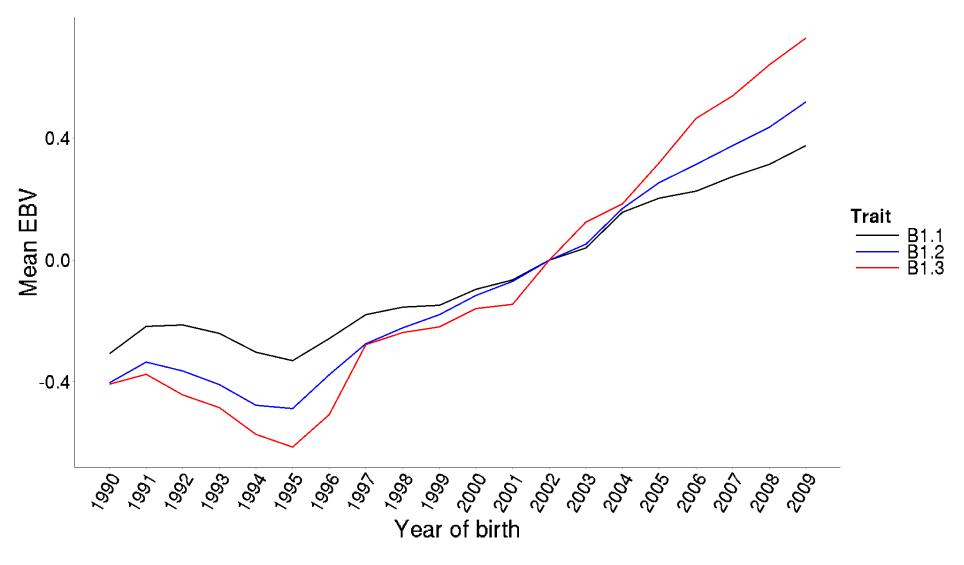
Vector of fixed effects


Design matrix for random genetic effects

Vector of random sire effects ($\mathbf{s} \sim N(0, \mathbf{G_0} \otimes \mathbf{A})$; $\mathbf{G_0}$: genetic covariance matrix; A: numerator relationship matrix for sires)

Vector of random residual effects: $\mathbf{e} \sim N(0, \mathbf{R_0} \otimes \mathbf{I})$; $\mathbf{R_0}$: residual covariance matrix

Genetic parameters


Period	B1.1	B1.2	B1.3	B2.1	B2.2	B2.3	B3.1	B3.2	B3.3
h² (%)	1.5	2.6	2.3	2.3	3.3	2.7	4.0	3.7	3.1

Results and Discussion

Genetic trends 1st lactation

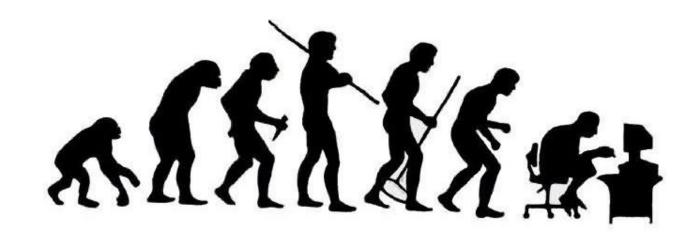
Results and Discussion

Period	$\widehat{oldsymbol{\delta}}$		$\hat{\delta}$ / σ_a (%)
B1.1	0.215	***	0.97
B1.2	0.451	***	0.96
B1.3	0.000		0.00
B2.1	0.466	***	1.19
B2.2	0.616	***	1.07
B2.3	0.363		0.62
B3.1	0.715	***	1.11
B3.2	0.459	*	0.66
B3.3	-0.341		-0.51

$$\mathbf{v} = \mathbf{1a} + \mathbf{ub} + \mathbf{t}\delta + \mathbf{e}$$

$$t_i = \sum_{j=2006}^{2013} \left(\frac{v_{ij}}{N_i} (j - j_0) \right)$$

Conclusions



- Bias of EBV for individual survival traits are below allowed limit of INTERBULL (2014)
- Applied method does not account for information from correlated traits
- Further research
 - Trend validation for index
 - Trend validation based on effective daughter contribution (EDC)
 - Validation compared to existing routine genetic evaluation for longevity

Thank you for your Attendance!

Acknowledgements

References

- Boettcher, P.J., Jairath, L.K., Dekkers, J.C.M. (1999): Comparison of Methods for Genetic Evaluation of Sires for Survival of Their Daughters in the Frist Three Lactations. *J Dairy Sci* **82**:1034-1044.
- Holtsmark, M., Heringstad, B., Ødegård, J. (2009): Predictive Abilities of different statistical models for analysis of survival data in dairy cattle. *J Dairy Sci* **92**: 5730-5738.
- INTERBULL (2014): Trend validation. http://www.interbull.org/ib/validation (August 08, 2014)
- Sewalem, A., Miglior, F., Kistemaker, G.J., Sullivan, P., Huapaya, G., Van Doormal, B.J. (2007) *Short Communication*: Modification of Genetic Evaluation of Herd Life from a Three-Trait to a Five-Trait Model in Canadian Dairy Cattle. *J Dairy Sci* **90**:2025-2028.
- Wiebelitz, J., Reinhardt, F., Liu, Z., Erbe, M., Simianer, H. (2014): Genetic Evaluation of Survival Traits in German Holstein Dairy Cattle Using a Six-Trait Linear Model. WCGALP 2014.

Appendix: Methods

Range of considered years

Example:

Calving	Year		
1	2007		
2	2009		
3	2010		

Period	Year of 1st calving	partial data	full data
B1.1	2007	yes	yes
B2.1	2007	yes	yes
B3.1	2007	no	yes

Appendix: Results and Discussion

Trend validation; years of first calving 2010 - 2013

Period	$\widehat{oldsymbol{\delta}}$		$\hat{\delta}$ / σ_a (%)
B1.1	0.224	**	1.01
B1.2	0.688	***	1.47
B1.3	0.821	**	1.68
B2.1	0.835	***	2.13
B2.2	1.753	***	3.04
B2.3	2.495	***	4.26
B3.1	2.488	***	3.85
B3.2	3.650	***	5.25
B3.3	4.966	***	7.39

$$\mathbf{v} = \mathbf{1a} + \mathbf{ub} + \mathbf{t}\delta + \mathbf{e}$$

$$t_i = \sum_{j} \left(\frac{v_{ij}}{N_i} (j - j_0) \right)$$