



# Longitudinal analysis of residual feed intake in mink using random regression with heterogeneous residual variance

Mahmoud Shirali, Vivi Nielsen, Steen Møller & Just Jensen











# Mink Breeding

#### • Denmark:

- World second mink fur producer
  - 17.2 Million skin (2012-2013)
- Fur farming is Denmark's third largest type of animal farming





#### Mink Fur Production and Price



Denmark world second largest mink skin producer





#### Fur skins are Denmark's largest export commodity to China



years





## Mink breeders & feed efficiency

#### • Mink breeders:

• Include feed efficiency in mink breeding program

#### Improvement in efficiency:

- Increased compatibility of fur production
  - 40-50% skin cost
- Reduced nutrient excretion (environmetal pollution)

| Year        | Feed produced, t | Protein of feed, t | Nitrogen of feed, t |
|-------------|------------------|--------------------|---------------------|
| 2012 - 2013 | 801.891          | 123.501            | 19.760              |





# Feed intake









# Dissect the genetic background of longitudinal residual feed intake (RFI) and body weight (BW)

Accurate method for feed efficiency

Least phenotype recording





### Data

#### • 2139 cages

• Pairs of one male and one female

#### Cumulative feed intake per cage

- 6 measurements
- From 105 210 days of age (15 to 30 weeks of age)
- Every three weeks

#### Body weight per animal

- 8 measurements
- From 63 210 days of age (9 to 30 weeks of age)
- Every three weeks





## Body weight and feed intake curve









- Univariate models
- Random Regression
  - Legendre polynomials
- Gibbs Sampling





## Random regression-Legendre polynomials

#### **RFI** Male & Female

 $\begin{aligned} \mathbf{CFI} \ \mathbf{cage}_{ijklm} &= YL_i + b_1(BW_{Male\,k}) + b_2(BW_{Female\,l}) \\ &+ l_{q1}(t)'r_i \quad \text{Fixed part, } LP_0, \, LP_1, \, LP_2 \\ \mathbf{G} &= 4 \times 4 \quad - \begin{cases} + l_{q2}(t)'a_k & \text{Male, } LP_0, \, LP_1 \\ + l_{q2}(t)'a_l & \text{Female, } LP_0, \, LP_1 \\ + l_{q2}(t)'p_k & \text{Male PE, } LP_0, \, LP_1 \\ + l_{q2}(t)'p_l & \text{Female PE, } LP_0, \, LP_1 \\ + l_{q2}(t)'p_l & \text{Female PE, } LP_0, \, LP_1 \\ + e_{ijklm} & \text{Heterogeneous, } 6 \text{ levels} \end{aligned}$ 





## Random regression-Legendre polynomials

 $\begin{array}{l} \bullet \mathbf{BW}_{\mathsf{male}} \And \mathbf{Bw}_{\mathsf{female}} \\ y_{ijkm} = YL_i \\ + l_{q1}(t)'r_i \quad \textit{Fixed part, } LP_0, \, LP_1, \, LP_2 \\ \mathbf{G} = 3 \times 3 \longrightarrow + l_{q1}(t)'a_k \quad \textit{Genetic effect, } LP_0, \, LP_1, \, LP_2 \\ \mathbf{P} = 3 \times 3 \longrightarrow + l_{q1}(t)'p_k \quad \textit{PE, } LP_0, \, LP_1, \, LP_2 \\ + e_{ijkm} \qquad \textit{Heterogeneous, 8 levels} \end{array}$ 











# Phenotypic variance of RFI



















# Genetic background of BW







# Phenotypic variance of BW







# Genetic correlations among BW



Q













# Selection index theory

Accuracy of selection based on different recording strategies

 $r_{a,I} = \frac{\sqrt{b P b'}}{\sqrt{a G a'}}$ 

 $r_{a,I}$  = accuracy of index

**b** = n×1 vector of weighing factors for each record

**P** = n×n matrix of phenotypic (co)variance among records of each trait

 $a = n \times 1$  vector of relative economic values for each record with only the pelting RFI and BW (210 days) considered to have one economical weight and other time points to be zero

G = n×n matrix of genetic (co)variance among all records of each trait











# Conclusion

Feed efficiency can be improved substantially by selection at the later stages of growth

Different genes can be associated with feed efficiency and body weight during the growing-furring period

Random regression models are suitable for dissecting the genetic background of RFI & BW







