

#### Effects of dietary forage proportion on maintenance energy requirement and energetic efficiency of lactating dairy cows

L F Dong<sup>\*†</sup>, **T Yan**<sup>\*</sup>, C P Ferris<sup>\*</sup> and D A McDowell<sup>†</sup>

\* Agri-Food and Biosciences Institute, Hillsborough, UK \* Faculty of Life and Health Sciences, University of Ulster, UK

EAAP 2014 Copenhagen, Denmark, 25 - 29 August, 2014

www.afbini.gov.uk

#### Introduction

There is evidence indicating that dietary forage proportion can influence maintenance energy requirement of dairy cows

- An early study (Yan et al., 1997) reported a positive relationship between ME requirement for maintenance and dietary silage proportion
- However, this effect has not been considered in the majority of energy feeding systems for dairy cows used across the world
  - Normally, a single value for maintenance energy requirement (MJ/kg<sup>0.75</sup>) is recommended for rationing dairy cows, irrespective of diet forage proportion
- There is a need to address this issue, especially for dairy cows managed under the low input and organic dairy production systems



#### Objective

The objective was to use a large calorimeter dataset of lactating dairy cows to evaluate the effects of dietary forage proportion on:

- Metabolisable energy requirement for maintenance (ME<sub>m</sub>)
- Efficiency of utilisation of ME for lactation (k<sub>1</sub>)

(this study was funded by a FP7 project – SOLID sustainable organic and low input dairying)







Food and iences Institute

#### **AFBI calorimetric data**

- 924 lactating cow data used in the present study obtained from 32 calorimeter chamber experiments undertaken at AFBI from 1992 to 2010
  - 814 from Holstein-Friesian cows
  - 48 from Norwegian cows
  - 62 from HF crossbred cows
- Animal characteristics
  - Parity:  $1^{st} = 258 \text{ cows}$ ,  $2^{nd} = 206 \text{ and } 3^{rd} \text{ or over} = 460$
  - Days in milk: 20 to 354
  - Genetic merit (HF): low to high yielding cows
- Diet information
  - Forage only diets = 65, and mixed diets = 859
  - With mixed diets, forage proportion = 10 to 87% (DM basis)
  - Majority of diets based on grass silage



#### **Calorimeter measurement**

> Chamber measurement of energy intake and output



#### **Statistical analysis**

The whole dataset was divided into 3 groups based on forage proportion in diets (FP): FP < 30%, FP = 30% to 99% and FP = 100%

Two statistical methods used to evaluate if there was any significant differences between the 3 groups of data in ME requirement for maintenance ( $ME_m$ ) and efficiency of ME use for lactation ( $k_l$ )

- ANOVA Analysis of variance
- Linear regression between ME<sub>m</sub> or k<sub>1</sub> and ME intake

Effects of a number of factors were removed, including experiments, days of milk, parity, milk yield and genetic merit



#### Calculation of ME<sub>m</sub> and k<sub>l</sub>

ME requirement for maintenance (ME<sub>m</sub>) and efficiency of ME use for lactation (k<sub>1</sub>) for individual cows calculated using energy intake and output data

•  $ME_m (MJ/kg^{0.75}) =$  heat production minus energy losses from the inefficiencies of ME use for lactation, tissue change and pregnancy (AFRC, 1993)

 $k_1$  = milk energy output (E<sub>1</sub>) adjusted to zero tissue energy retention (E<sub>g</sub>) divided by difference between ME intake and ME<sub>m</sub>

•  $k_l = (E_l + a^*E_g)/(ME \text{ intake - }ME_m)$ 



## Animal and diet data

| Mean | SD                                             | Minimum                                         | Maximum                                                              |
|------|------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------|
| 553  | 66.7                                           | 379                                             | 757                                                                  |
| 2.5  | 0.39                                           | 1.5                                             | 4.5                                                                  |
| 164  | 85.9                                           | 18                                              | 354                                                                  |
| 2.5  | 1.6                                            | 1                                               | 9                                                                    |
| 22.2 | 7.83                                           | 1.0                                             | 49 1                                                                 |
| 52   | 20.5                                           | 10                                              | 100                                                                  |
|      | Mean<br>553<br>2.5<br>164<br>2.5<br>22.4<br>53 | MeanSD55366.72.50.3916485.92.51.622.47.835320.5 | MeanSDMinimum55366.73792.50.391.516485.9182.51.6122.47.831.05320.510 |



#### **Energy intake and output data**

|                 | Mean | SD   | Minimum | Maximum |  |
|-----------------|------|------|---------|---------|--|
| GE intake       | 311  | 63.3 | 114     | 485     |  |
| Faecal energy   | 79   | 21.1 | 25      | 150     |  |
| Urine energy    | 11   | 4.1  | 2       | 59      |  |
| Methane energy  | 21   | 4.4  | 8       | 38      |  |
| Heat production | 125  | 20.3 | 67      | 184     |  |
| Milk energy     | 70   | 23.2 | 3       | 141     |  |
| Energy balance  | 4    | 22.8 | -88     | 71      |  |
| 2101            |      |      |         |         |  |

## E<sub>I(0)</sub> against ME intake

Linear relationships between adjusted milk energy output and ME intake for the 3 groups of datasets (FP < 30%, FP = 30%-99%, FP=100%)



## AVONA test for ME<sub>m</sub> and k<sub>l</sub>

 $\succ$  ANOVA test – effects of diet forage proportions on ME<sub>m</sub> and k<sub>1</sub>

|                                  | Diet forage proportion |           |       | s. e. | <i>P</i> -value |
|----------------------------------|------------------------|-----------|-------|-------|-----------------|
|                                  | < 30%                  | 30% - 99% | 100%  |       |                 |
| $ME_{\rm m}({\rm MJ/kg^{0.75}})$ | 0.647                  | 0.672     | 0.725 | 0.033 | 0.021           |
| k <sub>l</sub>                   | 0.645                  | 0.642     | 0.634 | 0.046 | 0.340           |

- Results indicated that
  - ME<sub>m</sub> (MJ/kg<sup>0.75</sup>) increased with increasing diet forage proportion
  - Diet forage proportion had no effects on k<sub>1</sub>



#### Linear regression for ME<sub>m</sub>

Linear regression to examine if there was any significant difference in constants (with a common coefficient) or slopes (with a common constant) in the regressions of energy intake against energy  $ME_m$  or  $k_1$ 

| Forage proportion |              | Coefficient     | Constants | $R^2$ | P value |
|-------------------|--------------|-----------------|-----------|-------|---------|
| < 30%             |              |                 | -0.396    |       |         |
| 30% - 99%         | $E_{l(0)} =$ | 0.614 ME intake | -0.418    | 0.88  | < 0.05  |
| 100%              |              |                 | -0.453    |       |         |
| < 30%             |              |                 | 0.543     |       |         |
| 30% - 99%         | $ME_m =$     | 0.059 ME intake | 0.567     | 0.68  | < 0.05  |
| 100%              |              |                 | 0.617     |       |         |

#### Results indicated that

- Increasing forage proportions increased maintenance energy requirement
- $ME_m$  (MJ/kg<sup>0.75</sup>) increased with increasing ME intake

#### Conclusions

Dietary forage proportion has no significant effect on the efficiency of ME use of lactation (k<sub>1</sub>) for lactating dairy cows

 However, increasing dietary forage proportion can increase ME requirement for maintenance (ME<sub>m</sub>)

Dairy cows managed under the low input systems may require more energy than that currently adopted, to meet their basal metabolic rates



#### Acknowledgements

The 1<sup>st</sup> author, Mr Lifeng Dong, was funded by Chinese Scholarship Council for his PhD study

This work was funded by the European FP7 – Project No. 266367 Sustainable Organic and Low Input Dairying (SOLID)

# **Thank You**

