Reducing greenhouse gas emissions from dairy farming via feeding & breeding

Corina van Middelaar

Paul Berentsen, Jan Dijkstra & Imke de Boer

GHG emissions from dairy farming

Dairy sector: 30% of global GHG emissions by livestock

Based on Van Middelaar et al. (2011) and Gerber et al. (2013).

How to assess net benefit of a strategy?

Integrated modelling at chain level

 CO_2 -e: 1 × CO_2 + 25 × CH_4 + 298 × N_2O

Reducing greenhouse gas emissions via feeding?

Which strategy is most cost-effective?

Aim 1

evaluate cost-effectiveness of three feeding strategies to reduce enteric CH₄ in dairy cows

using integrated modelling

Feeding strategies explored

Nitrate supplementation

• 1% of DM intake; 75% nitrate

Extruded linseed supplementation

• 1 summer; 2 winter (kg/cow/d); 56% linseed

Less mature grass (silage)

- grazing: 1400 1700 kg DM/ha
- harvesting: 3000 3500 kg DM/ha

Method - feeding

Average farm: maximize labour income

- 45 ha
- 603 tonnes milk
- 76 cows; 49 young stock
- milk yield cow: 7968 kg/yr

Results feeding strategies

Van Middelaar et al. 2014

Reducing greenhouse gas emissions via breeding?

Increasing annual milk yield per cow

- Fewer animals to produce same amount of milk
- Dilution of GHGs from maintenance

Improving longevity

• Fewer female replacements needed

Reducing greenhouse gas emissions via breeding?

Which trait offers most potential?

Aim 2

determine impact of increase of one $\sigma_{\!g}$ in milk yield and longevity

using integrated modelling

Method - breeding

Farm 2020: maximize labour income

- 85 ha; all manure used on farm
- 168 cows; 100 young stock
- milk yield cow: 8758 kg/yr
- Replacement rate: 27%

Results breeding strategies

GHG emissions	(kg CO ₂ -eq/ton FPCM)
Reference	882
Milk yield	-36
Longevity	-32

UR per cow/year)	
122	
82	
	UR per cow/year) 122 82

Conclusions

Feeding & Breeding offer potential to reduce
GHG emissions at chain level

 Feeding: Nitrate largest reduction in emissions
Reducing grass maturity most costeffective

 Breeding: Milk yield more important than longevity
Importance longevity increases with focus on GHG emissions

Thank you for your attention

Ministry of Infrastructure and the Environment

Corina.vanMiddelaar@wur.nl

GHG emissions method-1

kg CO₂-e/t FPCM*

	Ref	
Animal emissions Enteric CH ₄ Manure	445	50% enteric CH4
On-farm feed Grass Maize	67 37	
Farm inputs Maize silage Concentrates Synthetic fertilizer Other	24 118 51 23	Lower than
Total	882 -	literature

* FPCM = Fat-and-protein corrected milk

GHG emissions method-1

kg CO₂-e/t FPCM*

	Ref	Milk Yield	
Animal emissions			Dilution
Enteric CH ₄	445	-10	
Manure	118	-5	D application
On-farm feed			rates
Grass	67	+6	Tates
Maize	37	-14	
Farm inputs			Maize
Maize silage	24	+18	concentrates
Concentrates	118	-28	concentrates
Synthetic fertilizer	51	-2	
Other	23	-1	
Total	882	-36	

* FPCM = Fat-and-protein corrected milk