

U N I K A S S E L V E R S I T 'A' T

The 65th Annual Meeting of the EAAP 24th to 28th August 2014, Copenhagen, Denmark

Generating test-day methane emissions as a basis for genetic studies with random regressions

T. Yin¹², H. Frevert¹, T. Pinent¹, K. Brügemann¹, H. Simianer² and S. König¹

¹Department of Animal Breeding, University of Kassel, Witzenhausen

²Department of Animal Breeding and Genetics, University of Göttingen, Göttingen

- Greenhaus gas (GHG) emissions
 - CO_2 , N_2O , and CH_4
 - global climate change
 - inefficient use of dietary energy
- The dairy cattle sector (FAO, 2010)
 - 4% of GHG emissions
 - 52% contribution of methane emissions (ME)
- Methods to measure ME
 - respiration chamber
 - sulfur hexafluoride tracer
 - mobile laser methane detector

- Greenhaus gas (GHG) emissions
 - CO_2 , N_2O , and CH_4
 - global climate change
 - inefficient use of dietary energy
- The dairy cattle sector (FAO, 2010)
 - 4% of GHG emissions
 - 52% contribution of methane em

Methods to measure ME

- respiration chamber
- sulfur hexafluoride tracer
- mobile laser methane detector

- Greenhaus gas (GHG) emissions
 - CO_2 , N_2O , and CH_4
 - global climate change
 - inefficient use of dietary energy
- The dairy cattle sector (FAO, 2010)
 - 4% of GHG emissions
 - 52% contribution of methane en

Methods to measure ME

- respiration chamber
- sulfur hexafluoride tracer
- mobile laser methane detector

- Greenhaus gas (GHG) emissions
 - CO_2 , N_2O , and CH_4
 - global climate change
 - inefficient use of dietary energy
- The dairy cattle sector (FAO, 2010)
 - 4% of GHG emissions
 - 52% contribution of methane emissior

Methods to measure ME

- respiration chamber
- sulfur hexafluoride tracer
- mobile laser methane detector

(Foto by Chagunda and Wall, 2012)

Aims of this study

- simulate and predict test-day ME using indicator traits
- estimate heritabilities for ME by DIM
- genetic correlations: test-day ME and test-day production traits by DIM
- genetic correlations: test-day ME and fertility traits by DIM tesy-day ME and clinical mastitis by DIM
- evaluate breeding program designs
 - progeny testing program
 - genomic breeding programs

____ Data

Real data

- 7804 test-day records
- 916 first lactation Brown Swiss cows
- 41 low input farms in mountainous regions in Switzerland
- Test-day production traits
 - Milk yield (MY), fat percentage (Fat%), protein percentage (Pro%), milk urea nitrogen (MUN)
- Conformation traits
 - Wither height (WH), hip width (HW), body condition score (BCS)
- Fertility traits
 - Calving interval (CI), days open (DO), stillbirth (SB)
- Health trait: clinical mastitis (CM)

4. Genetic correlations:

 CH_4

- test-day ME and fertility traits
- test-day ME and clinical mastitis

Bivariate random regression and single trait models (DMU package)

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 \mathbf{b}_1 + \mathbf{Z}_1 \mathbf{a}_1 + \mathbf{W} \mathbf{p} + \mathbf{e}_1 \\ \mathbf{X}_2 \mathbf{b}_2 + \mathbf{Z}_2 \mathbf{a}_2 + \mathbf{Q} \mathbf{s} + \mathbf{e}_2 \end{bmatrix}$$

- Dependent variables
 - y₁: test-day ME1 or ME2
 - y₂: fertility traits or clinical mastitis
- Fixed effects
 - b₁: farm, test-year-season, LP 3
 - b₂: farm, calving-year-season, sex of the calf for SB
- Random effects
 - a1: additive genetic effect with LP 2
 - p: permanent environment effect with LP 2
 - a₂: additive genetic effect
 - s: service sire effect for CI and SB

Evaluation of breeding programs ZPLAN+ (Täubert et al., 2010)

Economic weight for milk yield was five times higher than for other traits

Proeny testing and genomic breeding program with different accuracy

24

Conclusions

- Methane emissions can be predicted when combining real data with deterministic equations and stochastic simulations
- Moderate heritabilities for methane emissions
- · Genetic correlation between methane emissions and
 - milk yield: antagonistic
 - fertility traits: positive
- Genomic breeding program is better
 - response to selection
 - discounted return per animal

Conclusions

- Methane emissions can be predicted when combining real data with deterministic equations and stochastic simulations
- Moderate heritabilities for methane emissions
- · Genetic correlation between methane emissions and
 - milk yield: antagonistic
 - fertility traits: positive
- Genomic breeding program is better
 - response to selection
 - discounted return per animal

\equiv Characteristics of breeding programs

	Progeny testing	Genomic selection			
Milking cow	25'000	25'000			
Bull dam	250	250			
Bull calves	125	125			
Test bull	50				
Proven bull	5	10			
Elite bull	1	1			
Bull sire	80% proven bull 20% elite bull	97% proven bull 3% elite bull			
Cow sire	40% test bull 50% proven bull 10% elite bull	 67% proven bull 33% elite bull			

Heritabilities and correlations among the traits							
Trait	ME	MY	DO	СМ	BCS	МТ	Economic value
Methane emission (ME)	0.44	0.89	0.86	0.03	0.35	Х	-6.84
Milk yield (MY)	0.92	0.34	0.93	0.04	-0.4	0	0.60 / 3.00
Days open (DO)	0.10	0.12	0.03	-0.18	-0.4	-0.03	-0.10
Clinical mastitis (CM)	0.02	0.01	0.02	0.10	-0.26	0.19	-1.66
Body condition score (BCS)	0.25	-0.01	-0.08	-0.01	0.15	Х	6.11
Milking temperament (MT)	х	0	Х	-0.67	Х	0.04	8.01
Phenotypic SD	0.22	2.88	60.57	1.91	0.42	0.62	

