

The ratio between energy and lysine is essential to improve milk yield in sows

C. Flummer¹, T. Feyera¹, U. Krogh¹, T. Hinrichsen², T. S. Bruun³, and P. K. Theil¹.

¹ Aarhus University Tjele, Denmark ²DI G

Copenhagen, Denmark

³ Danish Pig Research Center Aarhus, Denmark

E-mail: Christine.Flummer@agrsci.dk

Background

- Dramatic changes in nutrient requirements during the transition period
- The sow mobilize from body tissues to support milk production
- Excessive mobilization compromise the reproductive performance and longevity of the sow
- In Denmark, sows are fed one diet, from 1 week before to 4 weeks after parturition, composed to match nutrient requirement in peak lactation

Aim of project

- Develop a two-diet feeding system for precision feeding of lactating sows
 - Basal diet, matching sow maintenance requirements
 - Lactation supplement, matching requirements for milk synthesis
- To study how insufficient supply of energy or lysine or both, affects milk production and mobilization of body fat and protein

Study design

- 24 second parity Danish Landrace x Yorkshire sows, randomly assigned to 1 of 4 groups
 - Balanced for BW at d 101 of gestation
- Sow were fed basal diet according to BW and supplement according to milk production
 - Predicted from piglet weight gain measured on d 2, 4, 7, 14, 21, and 28, according to Hansen et al. 2014
- Litter size were standardized to 14 piglets. Piglets had no access to creep feed. Sows and piglets had ad lib water
- Body composition derived on d 2 and 28 from BW and backfat thickness (Rozeboom et al. 1994)

Diets

Two diets composed:

	MJ ME/kg DM	g SID Lys/kg DM	Supports
Basal diet	16.5	4.3	Sow maintenance
Lactation suppl.	16.9	7.8	Milk production

4 dietary groups:

	Relat	ive to require	Expected mobilization	
	Energy	Protein	Lysine	— Expected mobilization
LELL	70%	74%	71%	Fat and protein
LEHL	70%	81%	87%	Mainly fat
HELL	100%	93%	84%	Mainly protein
HEHL	100%	100%	100%	None

Results - Milk yield

Milk yield in relation to the lysine to energy ratio in the feed

7

Milk yield and feed intake

12.5 kg milk/d 13.2 kg milk/d 13.0 kg milk/d 11.7 kg milk/d7.9 kg feed/d 6.0 kg feed/d 7.7 kg feed/d 5.4 kg feed/d

Milk yield in relation to weight loss

The ratio between mobilized protein and fat

Conclusions

- Individual feeding based on BW and individual milk production is effective in increasing milk yield, minimizing weight loss and reducing feed costs
- An optimal ratio between lysine and energy in the feed increases milk production, but the level of energy and protein has minor impact on milk yield, but affects weight loss
- In spite of large differences in the ratio between lysine and energy in the feed, only minor changes in the ratio between mobilized protein and energy was observed