

Bayesian approach integrating correlated foreign information into a multivariate genetic evaluation

J. Vandenplas^{1,2}, N. Gengler¹

¹ University of Liege, Gembloux Agro-Bio Tech, Belgium

² National Fund for Scientific Research, Brussels, Belgium

Introduction

- √ For some traits (e.g., fatty acids, dry matter intake)
 - Phenotypes are unavailable or difficult to collect internally
- ✓ Most situations
 - Low accuracy of internal evaluations
 - □ Accurate external evaluations for correlated traits (e.g., milk productions evaluations)

Introduction

- ✓ Multivariate genetic evaluations
 - □ Correlations among traits
 - □ Prediction of EBV of a trait for which phenotypes are unavailable or difficult to collect internally
 - Improvement of accuracy

Aim

- ✓ To develop and test a simultaneous combination of
 - pedigree
 - □ internal phenotypes
 - correlated external information (i.e. EBV and REL)

with a multivariate evaluation using a Bayesian approach

Methods

✓ Regular mixed model equations

$$\begin{bmatrix} \mathbf{X'} \, \mathbf{R}^{-1} \mathbf{X} & \mathbf{X'} \, \mathbf{R}^{-1} \mathbf{Z} \\ \mathbf{Z'} \, \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z'} \, \mathbf{R}^{-1} \mathbf{Z} + \mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{\mathbf{I}} \\ \hat{\mathbf{u}}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'} \, \mathbf{R}^{-1} \mathbf{y}_{\mathbf{I}} \\ \mathbf{Z'} \, \mathbf{R}^{-1} \mathbf{y}_{\mathbf{I}} \end{bmatrix}$$

- $\mathbf{G}^{-1} = \mathbf{A}^{-1} \otimes \mathbf{G}_0^{-1}$: inverse of additive genetic (co)variance matrix
- $lue{y}_{I}$: vector of internal observations
- \Box $\hat{\beta}_{\tau}$: vector of estimated internal fixed effects
- \Box $\hat{\mathbf{u}}_{\mathbf{T}}$: vector of internal EBV

Assumption

 \checkmark Prior distribution of $\mathbf{u}_{\mathbf{I}}$

$$\mathbf{p}(\mathbf{u}_{\mathbf{I}}) = MVN(\mathbf{0}, \mathbf{G}) \longrightarrow \mathbf{p}(\mathbf{u}_{\mathbf{I}}|\mathbf{y}_{\mathbf{E}}) = MVN(\hat{\mathbf{u}}_{\mathbf{E}}, \mathbf{D}_{\mathbf{E}})$$

- \mathbf{y}_{E} : unavailable vector of correlated external phenotypes
- \square $\hat{\mathbf{u}}_{\mathbf{F}}$: vector of external EBV
- $figspace{1}{2}$ $f D_E$: prediction error (co)variance matrix of $\hat{f u}_E$

Methods

✓ Integration of correlated external information

$$\begin{bmatrix} \mathbf{X'} \, \mathbf{R}^{-1} \mathbf{X} & \mathbf{X'} \, \mathbf{R}^{-1} \mathbf{Z} \\ \mathbf{Z'} \, \mathbf{R}^{-1} \mathbf{X} & \mathbf{Z'} \, \mathbf{R}^{-1} \mathbf{Z} + \mathbf{G}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\beta}}_{\mathbf{I}} \\ \hat{\mathbf{u}}_{\mathbf{I}} \end{bmatrix} = \begin{bmatrix} \mathbf{X'} \, \mathbf{R}^{-1} \mathbf{y}_{\mathbf{I}} \\ \mathbf{Z'} \, \mathbf{R}^{-1} \mathbf{y}_{\mathbf{I}} \end{bmatrix}$$

$$\begin{bmatrix} X' R^{-1} X & X' R^{-1} Z \\ Z' R^{-1} X & Z' R^{-1} Z + D_{E}^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta}_{I} \\ \hat{u}_{I} \end{bmatrix} = \begin{bmatrix} X' R^{-1} y_{I} \\ Z' R^{-1} y_{I} + D_{E}^{-1} \hat{u}_{E} \end{bmatrix}$$

Issue

✓ External information only available for external animals

- \rightarrow $\hat{\mathbf{u}}_{\mathrm{E}}$ and $\mathbf{D}_{\mathrm{E}}^{-1}$: partially unknown
- → Estimations for internal animals

Estimation of \hat{u}_E

- ✓ Available
 - lue External EBV of external animals ($\hat{f u}_{E_{
 m F}}$)
- ✓ Internal animals
 - lue Prediction of external EBV ($\hat{\mathbf{u}}_{\mathbf{E_{I}}}$)

$$p(\hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{I}}}|\hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{E}}}) = MVN(\mathbf{G}_{\mathbf{E}_{\mathbf{I}\mathbf{E}}}\mathbf{G}_{\mathbf{E}_{\mathbf{E}\mathbf{E}}}^{-1}\hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{E}}}, (\mathbf{G}^{\mathbf{E}_{\mathbf{I}\mathbf{I}}})^{-1})$$

$$\rightarrow \hat{\mathbf{u}}_{\mathbf{E}} = \begin{bmatrix} \hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{E}}}' & \hat{\mathbf{u}}_{\mathbf{E}_{\mathbf{I}}}' \end{bmatrix}'$$

Correct propagation of external information

Estimation of D_E^{-1}

$$\mathbf{D}_{\mathrm{E}}^{-1} = \mathbf{G}^{-1} + \mathbf{\Lambda}_{\mathrm{E}}$$

$$\begin{aligned} & \boldsymbol{\Lambda}_{\mathbf{E}} = block \ diag \left(\boldsymbol{\Delta}_{\mathbf{j}} \mathbf{R}_{\mathbf{0}}^{-1} \boldsymbol{\Delta}_{\mathbf{j}} \right); \ j = 1, ..., n \ \text{animals} \\ & \text{For external animals} : \boldsymbol{\Delta}_{\mathbf{j}} = diag \left(\sqrt{RE_k} \right); \ k = 1, ..., t \ \text{traits} \\ & \text{For internal animals} : \boldsymbol{\Delta}_{\mathbf{j}} = \mathbf{0} \end{aligned}$$

Pedigree

- **▶QMSim** (Sargolzaei and Schenkel, 2009)
 - **▶10** generations
 - **≥2240** animals
 - **➤** Random selection and matings

Observations (trait 1) Pedigree Observations (trait 2)

- **≻**Observations
 - **≥2** traits
 - **≻**Only for females
 - > Fixed effect: herd effect (randomly attributed)
 - **▶** Residual correlation: 0.00
 - **→** Genetic correlations: 0.10, 0.25, 0.50, 0.75 and 0.90

- **≻**Trait of interest **≻**3 herds
- \geq 2 herds $\qquad \qquad \geq h^2 = 35\%$
- $h^2 = 10 \%$

Fuelvetions	Genetic correlations					
Evaluations	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)					
Bayesian	>0.999 (0.000)					

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)				
Bayesian	>0.999 (0.000)	>0.999 (0.000)				
8 -	0 0 0 0 0 0 0 0 0		- 100		°°°	

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)			
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)			

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)	0.634 (0.079)		
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)	0.999 (0.000)		

		•				
Evaluations	Genetic correlations					
Evaluations	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)	0.634 (0.079)	0.563 (0.091)	
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)	0.999 (0.000)	0.998 (0.000)	
25 -	0.0		90	1	00	
<u>0</u> -	0 00 00		9	(-	o o o o o o o o o o o o o o o o o o o	

✓ Average rank correlations of EBV_J with EBV_1 or EBV_B for external sires (N = 181.0 ± 1.1)

Evaluations	Genetic correlations					
	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.987 (0.004)	0.927 (0.020)	0.777 (0.053)	0.634 (0.079)	0.563 (0.091)	
Bayesian	>0.999 (0.000)	>0.999 (0.000)	0.999 (0.000)	0.999 (0.000)	0.998 (0.000)	

→ Rankings of Bayesian evaluations similar to rankings of joint evaluations

✓ Average REL

Fuelvetions	Genetic correlations					
Evaluations	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.10 (0.00)	0.10 (0.00)	0.10 (0.00)	0.10 (0.00)	0.10 (0.00)	
Bayesian	0.10 (0.00)	0.12 (0.00)	0.17 (0.00)	0.26 (0.00)	0.34 (0.00)	
Joint	0.10 (0.00)	0.12 (0.00)	0.17 (0.00)	0.26 (0.00)	0.33 (0.00)	

- → Retrieving almost all correlated information
- → Still some double counting

Results: female progeny

✓ Average rank correlations of EBV_J with EBV_1 or EBV_B for female progeny (N = 241.2 ± 47.1) of external sires

Fuelvetions	Genetic correlations					
Evaluations	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.992 (0.002)	0.954 (0.009)	0.844 (0.029)	0.721 (0.048)	0.652 (0.057)	
Bayesian	0.997 (0.001)	0.983 (0.003)	0.946 (0.010)	0.910 (0.017)	0.892 (0.021)	

→ Rankings of Bayesian evaluations more similar to rankings of joint evaluations

Results: female progeny

✓ Average REL

Evaluations	Genetic correlations					
Evaluations	0.10	0.25	0.50	0.75	0.90	
Trait 1	0.14 (0.00)	0.14 (0.00)	0.14 (0.00)	0.14 (0.00)	0.14 (0.00)	
Bayesian	0.14 (0.00)	0.14 (0.00)	0.15 (0.00)	0.18 (0.00)	0.20 (0.00)	
Joint	0.14 (0.00)	0.14 (0.00)	0.17 (0.00)	0.21 (0.00)	0.25 (0.00)	

→ Propagation of sires' external information to progeny

Perspectives

- ✓ Combination of information for traits having different
 - variance components heritabilities
 - Milk yields in different countries
 - units of measurement
 - Milk yields expressed in kg or lb

Perspectives

- ✓ Combination of information for traits having different
 - variance components heritabilities
 - Milk yields in different countries
 - units of measurement
 - Milk yields expressed in kg or lb
 - models
 - □ Random regressions test-day or lactation models

Perspectives

- ✓ Combination of information for traits having different
 - variance components heritabilities
 - Milk yields in different countries
 - units of measurement
 - Milk yields expressed in kg or lb
 - models
 - □ Random regressions test-day or lactation models
 - genotype by environment interactions

Conclusions

- ✓ Good integration of correlated external information
 - even with low genetic correlations
- ✓ Rankings of the Bayesian evaluations more similar to rankings of the joint evaluations
 - for animals with external information
 - for their progeny
- ✓ Numerous possible applications

Acknowledgments

© C.E.C.I ✓ CECI for computational resources

✓ Animal and Dairy Science Department, University of Georgia Athens, USA

✓ Animal Science Department, University of Ljubljana, Slovenia

- ✓ Financial supports
 - National Fund for Scientific Research
 - Wallonie Brussels International
 - University of Liege

