Estimating dominance effects and inbreeding depression of weaning weight in Pannon White rabbits

Nagy, Gorjanc, Čurik, Farkas, Szendrő

EAAP 2014, Copenhagen, Denmark

Introduction

- Genetic parameters
 - additive (included)
 - non-additive (ignored)
 - dominance
 - epistasis
- Consequence
 - Less acurate estimates

Material

- Synthetic Pannon White population (Hungary)
- Data from 1993 to 2013
 - pedigree 4,913
 - phenotype
 - dams 4,066
 - records 16,533
- Litter weight (35 d kg)

Methods

- Linear model accounting for:
 - parity (factor)
 - year-month (factor)
 - inbreeding (F) (regression)
 - complete generation equivalents (CGE) (regression)
 - number of weaned kits (regression)
 - permanent environment (factor)
 - additive (factor)
 - dominance (factor)

Models

Model	Inbreeding	A	D	N35 (C)
l	X	X	-	_
II	X	X	X	-
Ш	X	X	_	X
IV	X	X	X	X

Descriptive statistics

Variable	Mean	SD
Litter weight	6.80	2.22
CGE	6.37	4.36
F	2.72	3.25

Results – inbreeding depression (per 10% F)

Variable	Model	Depression
Litter weight		-0.1614
	II	-0.1609
	Ш	-0.0009
	IV	-0.0068

 Inbreeding depression practically diappeared when number of weaned kits was included in the model as a covariate

Results – variance components

Variable	Model	Pe	h ²	d ²
Litter weight	I	0.079	0.048	_
	П	0.079	0.048	0.00
	Ш	0.131	0.073	-
	IV	0.115	0.070	0.070

Results - Breeding value correlations

Model	II	Ш	IV
l	1.00	0.69	0.68
II		0.69	0.68
III			0.99

Results - Breeding value rank correlations

Model	II	III	IV
l	1.00	0.68	0.68
II		0.68	0.68
Ш			0.99

Conclusions

 Expected direction of inbreeding depression for models: I and II

 Sizeable dominance variation for litter weight for model: IV, but no effect and breeding value ranking

 Small confounding between permanent environmental and dominance effects for model: