HOST RESPONSE AND MICROBIOTA COMPOSITION AFTER

LACTOBACILLUS ADMINISTRATION: PIG AS MODEL FOR HUMAN

A de Greeff, D Schokker, S.A Vastenhouw, F.M de Bree, A. Bossers, F. Harders, N Stockhofe, M. Kleerebezem, J.M Wells, M.A Smits, **J.M.J Rebel**

≢ annemarie.rebel@wur.nl

Effect of probiotics on intestinal gene expression and microbiota composition

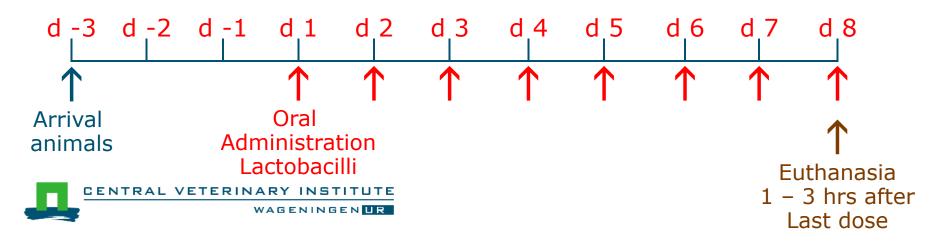
Pigs good model for human GIT

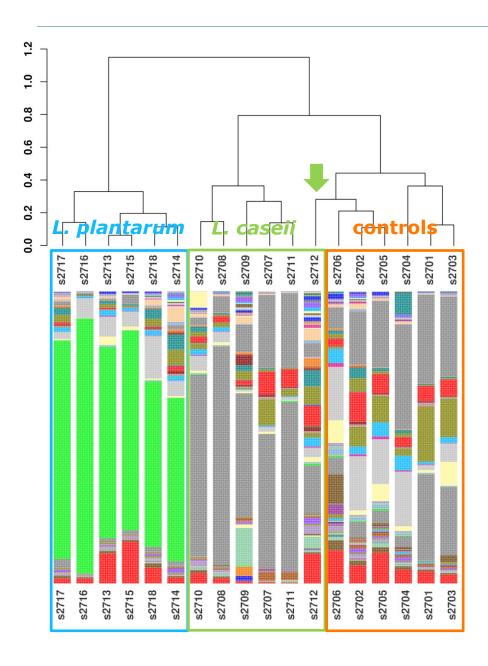
- Comparable anatomy
- Omnivores
- Comparable lifespan


```
<sup>1</sup>These authors contributed equally to this work
```

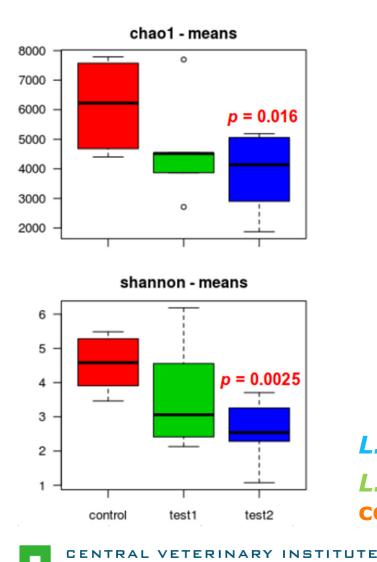
Keywords: pig model, intestinal microbiome, 16S rRNA amplicon sequencing, principal coordinate analysis, microbial diversity

- Animal model to study probiotics increases possibilities
 - More standardized conditions
 - Sampling along GIT
 - Additional challenges possible (viral or bacterial pathogen / stress /)


- The potential of porcine models for probiotic studies.
- This study evaluates the porcine responses to probiotics for which the molecular responses were previously determined *in vivo* in humans
- Intestinal gene expression and microbiota were determined after oral administration of *Lactobacillus*


Experimental set-up

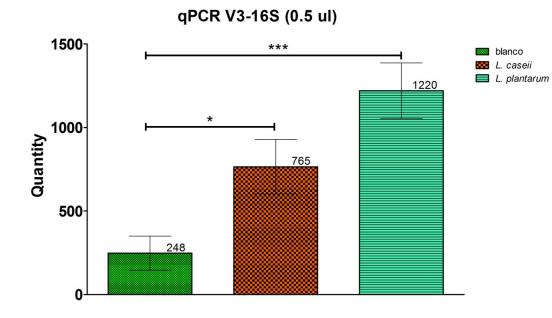
- 3 groups of 6 6-week old piglets (♀):
 - Lactobacillus caseii (glycerol stock in sport drink)
 - Lactobacillus plantarum (glycerol stock in sport drink)
 - Control (glycerol in sport drink)
- Daily administration orally (~ 4.10¹¹ CFU)
 - Daily consumption advised for human probiotics
 - Based on thesis Gabriele Gross: L. plantarum does not colonize in piglet GIT


Clustering based on microbiota profiles



- Animals cluster according to treatment
- L. plantarum treatment yields most distinct group
- One *L. caseii* animal clusters with control animals (S2712)

Diversity of microbiota



- L. plantarum treatment significant reduction in diversity
- L. caseii treatment reduced diversity, but not significant
- L. plantarum
- *L. caseii* controls

WAGENINGENUR

Absolute amount microbiota

- Increase in microbiota in lactobacillus treated groups
- *L. caseii* 3 times more than control
 - L. plantarum 5 times more than control

Differences between treatment groups are smaller than suggested.

Taxon – treatment association

- Lactobacillaceae are increased in both L. plantarum and L. caseii treated piglets (p = 0.0079)
- Lactobacillaceae in L. caseii group are predominantly L. caseii, same for L. plantarum
- OTU association shows decreased diversity among Lactobacillaceae

	control	L. caseii	L. plantarum
Lactobacillaceae species	65	37	22

Increased Lactobacillaceae at dispense of other taxons:

	Genus	control	L. caseii	L. plantarum
	Peptostreptococcaceae	23.7	12.1	1.2
	Streptococcaceae	13.1	2.5	6.8
	Leuconostocaceae	1.9	0.26	0.26
	Clostridiaceae	5.5	4.3	0.6
-	Gemella	0.4	0.04	0.04

Gene expression intestine

- LIMMA (Linear Models for Microarray Data)
- P_{adj} < 0.1 and logFC > |1.3|

Tissue	Comparison	Probes		Annotated Genes	
		down	up	down	up
Duodenum	L. caseii vs. Control	0	0	0	0
Duodenun	<i>L. plantarum</i> vs. Control	70	5	25	3
Tlours	<i>L. caseii</i> vs. Control	10	14	8	2
Ileum	L. Plantarum vs. Control	43	154	38	45

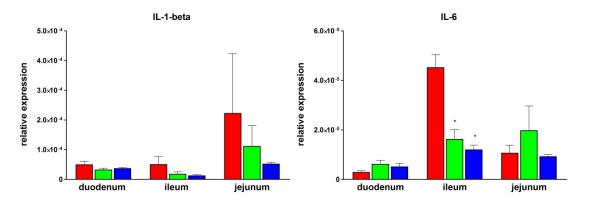
Functional Analysis (2)

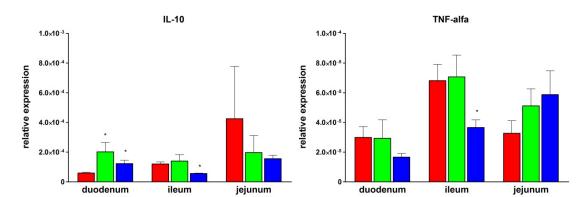
L. Plantarum vs Control (lleum)

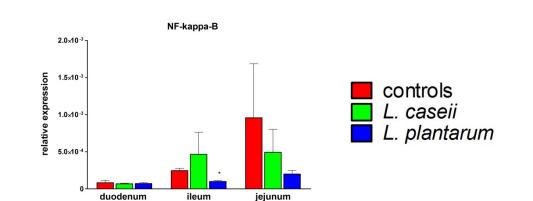
Down-regulated genes L. plantarum vs control (ileum)

Term	Overlap	Combined Score	Genes
immune system process (GO:0002376)	6_552	6.7	HLA- DRA;CD209;TREM1;SAMHD1;LST1;FCAR
immune response (GO:0006955)	5_421	5.9	HLA-DRA;TREM1;SAMHD1;LST1;FCAR
regulation of innate immune response (GO:0045088)	2_26	4.7	SAMHD1;SERPING1
cell adhesion (GO:0007155)	5_319	4.7	POSTN;CCR3;CD209;SELL;ZYX
regulation of immune response (GO:0050776)	2_96	3.2	SERPING1;SAMHD1
hormone metabolic process (GO:0042445)	2_50	2.7	HSD11B2;ACE
lipid biosynthetic process (GO:0008610)	2_121	2.7	ACSS2;HSD11B2
HSA04510 FOCAL ADHESION	2_200	2.6	COL6A2;ZYX
HSA04514 CELL ADHESION MOLECULES	2_134	2.3	HLA-DRA;SELL
anatomical structure development (GO:0048856)	4_639	2.2	POSTN;ACE;BMP4;LST1

Up-regulated genes L. plantarum vs control (ileum)


Term	Overlap	Combined Score	Genes
establishment or maintenance of chromatin architecture (GO:0006325)	3_166	4.8	HIST1H2BN;EP400;WHSC1L1
chromosome organization (GO:0051276)	3_225	4.6	HIST1H2BN;WHSC1L1;EP400
organelle organization (GO:0006996)	3_553	3.0	HIST1H2BN;WHSC1L1;EP400
chromatin modification (GO:0016568)	2_125	2.9	EP400;WHSC1L1
regulation of transcription from RNA polymerase II promoter (GO:0006357)	2_334	2.7	ELL3;CHD3
protein modification process (GO:0006464)	3_736	2.7	WHSC1L1;LRP2;EP400
HSA04810 REGULATION OF ACTIN CYTOSKELETON	2_212	2.7	PFN2;LIMK2
HSA04670 LEUKOCYTE TRANSENDOTHELIAL MIGRATION	2_115	2.4	CLDN7;ARHGAP5
cellular protein metabolic process (GO:0044267)	3_963	2.2	WHSC1L1;LRP2;EP400
RNA metabolic process (GO:0016070)	2_498	2.2	SYNCRIP;ELL3




WAGENINGENUR

qPCR @ innate immune genes

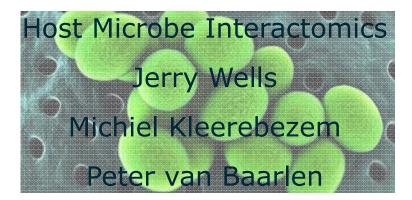
- Differences between GIT locations
 - Largest variance in jejunum
 - Duodenum least responsive
- L. caseii & L. plantarum suppress IL-6 (and IL-1beta)
- L. plantarum suppresses TNF-alfa as well
- IL-10 response ambiguous
- NF-kappa-B1 (p105/p50) suppressed by L. plantarum

Conclusion

- No gross morphological changes in epithelial integrity were observed.
- Microbiota composition of probiotic groups changed
 - the administered lactobacilli were among the most predominant species residing in the jejunum, although lactobacilli were also prominently present in the control animals.
- L. plantarum administration elicited transcriptional modulation of immune related pathways in ileum, which was also the most prominent response-category observed in the human study

Are probiotics beneficial for health?

- Can probiotics affect course of infection/infectious disease
- requires → animal model to measure in an appropriate window of infectious disease (subclinical-mild)
- At CVI two porcine models for respiratory or systemic infection used:
 - → mild virulent bacterial infection (Actinobacillus pleuropneumoniae) alone or preceded by subclinical viral infection (Porcine Reproductive and Respiratory Syndrome Virus)



Actinobacillus pleuropneumoniae is impaired by the garlic volatile allyl methyl sulfide (AMS) *in vitro* and in-feed garlic alleviates pleuropneumonia in a pig model

Petra M. Becker^{a,*}, Piet G. van Wikselaar^a, Monique F. Mul^a, Arjan Pol^b, Bas Engel^c, Jan W. Wijdenes^d, Carola M.C. van der Peet-Schwering^a, Henk J. Wisselink^d, Norbert Stockhofe-Zurwieden^d

Credits

Central Veterinary Institute Astrid de Greeff

Annemarie Rebel Mari Smits (WLR / CVI) Alex Bossers Dirkjan Schokker (WLR) Stephanie Vastenhouw Freddy de Bree Frank Harders Albert de Boer Animal Care Takers

