INTEREST OF QPS (QUALIFIED PRESUMPTION OF SAFETY) FOR PROBIOTIC DEVELOPMENTS

[65^{TH} EAAP ANNUAL MEETING, 25-29TH AUGUST 2014, SESSION 37]

European Probiotic Association (EPA) Erawan Consulting / France

Dr G. BERTIN

Summary

Introduction

- Feed additive EU regulation
- QPS
- How to assess strain safety?
 - Strain listed
 - Strain not listed
- Conclusion

Live microorganisms

- Food to produce
 - Fermented products as cheese, yoghourt, wine, beer, etc
 - Use as starter to produce cheese, novel food
- Feed to produce
 - Confined use: enzymes, vitamins, amino acids
 - Not confined, directly in feed: probiotics, silage, detoxifying agents
 - Conventional and GMM organisms

Safety concern

Microorganisms - not to produce
Endo-exo toxin
Antibiotics
Microorganisms - not generate
Antibioresistance
Only concern microorganisms intentionally used

→ Regulation feed and food (novel food)

Summary

- Introduction
- Feed additive EU regulation
- QPS
- How to assess strain safety?
 - Strain listed
 - Strain not listed
- Conclusion

Regulation (EC) No 1831/2003 of the EU Parliament (22 Sept. 2003) on additives for use in animal nutrition

Regulation (EC) No 429/2008 of the Commission (25 April 2008) detailed rules for the implementation of Regulation (EC) No 1831/2003

Regulation (EC) No 429/2008

- Detailed rules
 - For preparation and presentation of application
 - For assessment and the authorisation of feed additives
- Concerns different types of product
 - Chemically defined substances
 - Plant extracts
 - Dead microorganisms

Live microorganisms, confined and not confined as probiotics, silage agents, detoxifying agents....

Feed additive application dossier content

- Section I: summaries of the dossier
- Section II: Identity, characterisation and conditions of use of the additive – Methods of analysis
- Section III: Studies concerning the safety of the additive
 - Microbial studies
- Section IV: Studies concerning the efficacy of the additive
- Section V: Post-monitoring plan

Microbial requirements (CR No 429/2008)

[Confined and not confined live microorganisms]

- Name and taxonomic classification (latest international codex of nomenclature)
- Deposit in internationally recognised culture collection
- Culture collection provides
 - Certificate of deposition
 - Accession number under which the strain is hold
 - Morphology, physiology
- Molecular characteristics (for identification of the strain)
- History of modification
- Accession number is included in the Regulation autorisation
- Genotoxicity, mutagenicity studies
- Tolerance studies

Summary

Introduction
Feed additive EU regulation
QPS
How to assess strain safety?
Strain listed
Strain not listed
Conclusion

Safety consideration of microorganisms (QPS)

- Live microorganisms intentionally introduced into the feed chain
- Scientific Committee (EFSA 2007) set up the concept of Qualified Presumption of Safety (QPS) [not so far than GRAS (Generally Recognised As Safe) concept]
 - Assessment tool for safety
 - Generic concept to prioritize and harmonize
 - Assessment on case-by-case basis (always required)
- First list of microorganisms established in 2007
- Be reviewed annually by **BIOHAZ**
 - 2008 antimicrobial resistance introduced
 - 2009-2010-2011: qualification regarding absence of antimycotic resistance for yeast introduced

QPS: Qualified Presumption of Safety

- Safety pre-assessment of defined taxonomic group (eg. generic)
- QPS based on 4 pillars
 - Taxonomy (establishing identity)
 - Familiarity (body of knowledge)
 - Possible pathogenicity (safety, antibioresistance)
 - Other qualifications
- QPS would avoid to provide genotox, mutagenicity, tolerance studies

QPS first pillar: taxonomy

Species, sub-species

- Other grouping such as homofermentative, heterofermentative should be considered
- Bacteria (international code of nomenclature or international journal of systematic ISSEM)
- Filamentous fungi and yeast (ICBM IMA)
- Viruses (ICTV)

QPS 2nd pillar: familiarity

- Concerns a defined taxonomy unit
- Assessment to conclude its safety

QPS 3rd pillar: possible pathogenicity

- Assessment of antimicrobial resistance
- Strain should not harbour any acquired any antimicrobial resistance to chemically relevant antibiotics
- Strain carrying acquired resistance should not be intentionally introduced into feed and food
- Not produce antibiotics relevant in animals and humans

QPS 4th pillar: Other qualifications

- *Bacillus*: some rare strain among *bacillus* have caused food-born intoxication
 - Technical specific guidance [EFSA Journal 2014;12(5):3665]

• *Enterococcus faecium*: assessment of this microorganism has been made at strain level, absence of putative virulence and acquired antibiotic resistance should be demonstrated [guidance, EFSA Journal 2012;10(5):2682]

Summary

Introduction

- Feed additive EU regulation
- QPS
- How to assess strain safety?
 - Strain listed
 - Strain not listed
- Conclusion

How to assess the strain safety?

- QPS: last published version [EFSA Journal 2013;11(11):3449]
- Check if the strain is listed
 - If so
 - If not

QPS list [EFSA Journal 2013;11(11):3449] 1. Check the

Gram-Positive Non-Sporulating Bacteria							
Species			Qualifications *				
Bifidobacterium	Bifidobacterium bifidum	Bifidobacterium longum	-				
adolescentis	Bifidobacterium breve						
Bifidobacterium animalis							
Corvnebacterium	•	•	QPS only apply when the				
glutamicum**			species is used for amino				
0			acid production				
		·	-				
Lactobacillus acidophilus	Lactobacillus farciminis	Lactobacillus paracasei					
Lactobacillus amylolyticus	Lactobacillus fermentum	Lactobacillus					
Lactobacillus amylovorus	Lactobacillus gallinarum	paraplantarum					
Lactobacillus alimentarius	Lactobacillus gasseri	Lactobacillus pentosus					
Lactobacillus aviaries	Lactobacillus helveticus	Lactobacillus plantarum					
Lactobacillus brevis	Lactobacillus hilgardii	Lactobacillus pontis					
Lactobacillus buchneri	Lactobacillus johnsonii	Lactobacillus reuteri					
Lactobacillus casei ***	Lactobacillus	Lactobacillus					
Lactobacillus cellobiosus	kefiranofaciens	rhamnosus					
Lactobacillus coryniformis	Lactobacillus kefiri	Lactobacillus sakei					
Lactobacillus crispatus	Lactobacillus mucosae	Lactobacillus salivarius					
Lactobacillus curvatus	Lactobacillus panis	Lactobacillus					
Lactobacillus delbrueckii	Lactobacillus collinoides	sanfranciscensis					
Lactococcus lactis							
Leuconostoc citreum	Leuconostoc lactis	Leuconostoc					
Leuconostoc		mesenteroides					
pseudomesenteroides							
Oenococcus oeni	-						
Pediococcus acidilactici	Pediococcus dextrinicus	Pediococcus					
		pentosaceus					
Propionibacterium	Propionibacterium						
freudenreichii	acidipropionici						
Streptococcus							
thermophilus							
B = sillers	•						
Baculus Smaalaa			Qualificationst				
Species	Destiller for iferentia	Destiller and second	Quanneations*				
Bacilius	Bacilius jusijormis	Bacillus mojavensis	Absence of toxigenic				
amyloliquejaciens	Bacilius ientus	Bacillus pumilus	activity.				
Baculus atrophaeus	Bacillus lichenijormis	Bacillus subnits					
Bacillus clausii	Bacillus megaterium	Bacillus vallismortis					
Bacillus coagulans							
Geobacillus			Absence of toxigenic				
stearothermonhilus			activity				
steurothermophilus			activity.				
Gram-Negative Bacteria		•					
Species							
Gluconobacter oxydans			QPS only apply when the				
-			species is used for vitamin				
			production				

Cont'd

Yeasts ^{††}			
Species			Qualifications
Debaryomyces hansenii			
Hanseniaspora uvarum		-	
Kluyveromyces lactis	Kluyveromyces marxia	nus	
Komagataella pastoris			QPS only apply when the
Lindnera jadinii			species is used for enzyme
Ogataea angusta			production
Saccharomyces	Saccharomyces	Saccharomyces	
bayanus****	cerevisiae ^{†****}	pastorianus****	
Schizosaccharomyces			
pombe			
Wickerhamomyces			QPS only apply when the
anomalus****			species is used for enzyme
Yanthonhyllomycas	•	•	production
dandrorhous (imperfect			
form Phaffia rhodozyma)			
Virus			•
Plant viruses			
Family			
Alphaflexiviridae	Potyviridae		
Insect viruses			
Family			
Baculoviridae			

2. Ensure the purity of the strain
* PFGE (Pulsed Field Gel Electrophoresis)
* 16s rRNA

- 3. **MIC (Microbial Inhibition Concentration)** MIC=Microbiological cut-off (ISO 1932:2010 or similar)
- Cut-off values obtained by studying the distribution of the chosen antimicrobial in bacterial population belonging to a single taxonomial unit

S = Susceptible (strain inhibited at [equal or lower] to the cut-off value [S \leq x mg/l]) R = Resistant (strain not inhibited at [equal] to the cut-off value [R > x mg/l]

Microbiological cut-off

Enterococcus faecium	2	4	32	1024		128	4	4	4	4	16
	ampicillin	vancomycin	gentamycin	kanamycin	·	streptomycin	erythromycin	clindamycin	tylosine	tetracycline	chloramphenicol
n.r. not required. ^a including <i>L. delbrueckii</i> , <i>L. helveticus</i> ^b including <i>L. fermentum</i> ^c including the homofermentative species <i>L. salivarius</i>											-
Other Gram +	1	2	4	16		8	0.5	0.25	2	2	
Provionibacterium		4	4 64	0 64		ہ 64	4	4	2	2	
Bacillus spp		4	4	04 Q		8	4	4	7 0	- 1 0	
Laciococcus laciis	2	4	52 32	64		52 64	1	1	4	8	
Leuconostoc	2	n.r.	16	16		64	1	1	8	4	
Pediococcus	4	n.r .	16	64		64	1	1	8	4	
Bifidobacterium	2	2	64	n.r.		12 8	1	1	8	4	-
	· · ·		52				-		· ·		-
Lactobacillus casei /paracasei		n r	32	64		64	1	1	4	4	
Lactobacillus rhannosus		11.1. n.r	16	64		32	1	1	32 8	0 4	
Lactobacillus plantarum/pantorus		n.r.	16	64		64	1	1	8	4	
Lactobacillus reuteri		n.r.	8	64		64	1	1	16	4	
Lactobacillus obligate heterofermentative ^b		n . r .	16	32		64	1	1	8	4	
Lactobacillus acidophilus group		2	16	64		16	1	1	4	4	
Lactobacillus obligate homofermentative ^a	1	2	16	16		16	1	1	4	4	
	ampicillin	vancomycin	gentamycin	kanamycin		streptomycin	erythromycin	clindamycin	tetracycline	chloramphenicol	_

Proposed scheme for the antimicrobial resistance assessment of a bacterial strain used as a feed additive

EFSA Journal 2012;10(6):2740

Acquired resistance can be due

- Acquired genes (bacteria via gain of exogenous DNA)
- Mutation (of indigenous genes)
- Absence of known antimicrobial resistance gene not sufficient to explain detected resistance
- We have to provide the origin of this resistance!! The best is to stop

Summary

Introduction
Feed additive EU regulation
QPS
How to assess strain safety?
Strain listed
Strain not listed
Conclusion

How to assess the strain safety?

How to assess the strain safety?

- QPS: last published version [EFSA Journal 2013;11(11):3449]
- Check if the strain is listed
 - If so
 - If not

(New strain to be used in the feed/food chain)1. Establishing the cut-off

- Verify taxonomy and purity
- ATB test
- 2. Antibiotic / toxin production
- 3. Genotoxicity, mutagenicity studies
- 4. Tolerance studies

1. Establishing the cut-off

- Collect at least 10-50 corresponding strain issued from different international collection + control strain
- Verify taxonomy and purity (16s rRNA + PFGE)
- ATB test (EFSA + EUCAST lists)

2. Antibiotic / toxin production

- Not relevant for use
- If species known to produce ATB, absence to be confirmed by analysis

3. Genotoxicity, mutagenicity studies

- Stepwise approach
 - 1st step: 2 *in vitro* tests
 - bacterial reverse mutation (OECD TG 471) (mutagenicity)
 - *In vitro* mammalian cell micronucleus (OECD TG 487) (genotoxicity)
- Conclusion:
 - If negative, stop
 - If positive, continue

3. Genotoxicity, mutagenicity studies (cont'd)

- Stepwise approach, if positive
 - Mammalian erythrocytes micronucleus test (OECD TG 474)
 - Transgenic rodent somatic and germ cell gene mutation assays (OECD TG 488)
 - *In vivo* Comet assay (no international protocol available)
- If negative test , no genotoxin

4. Tolerance studies

- *In vivo* trial
 - 10X the recommended dose (biochemistry and hematology)
 - 100X the recommended dose (only animal performance)

Summary

Introduction
Feed additive EU regulation
QPS
How to assess strain safety?
Strain listed
Strain not listed
Conclusion

Live microorganisms

Conclusion

- QPS is qualified generic pre-assessment system
- Safety assessment for microorganisms
- Reduce the trial investment
- Annual revision of QPS list