Optimizing design of small-sized nucleus dairy cattle breeding programs with minimal recording

Kariuki C.M.^{1,2}., H. Komen¹, A.K. Kahi³, J.A.M. van Arendonk¹

¹Wageningen University, Animal Breeding and Genomics Centre, The Netherlands

²Chuka University, Department of Animal Sciences, Kenya

³Egerton University, Department of Animal Sciences, Kenya

Acknowledgements

Netherlands Organization for International nu ffic Cooperation in Higher Education (NUFFIC)

Introduction

 Current genetic improvement in developing countries is through semen importation

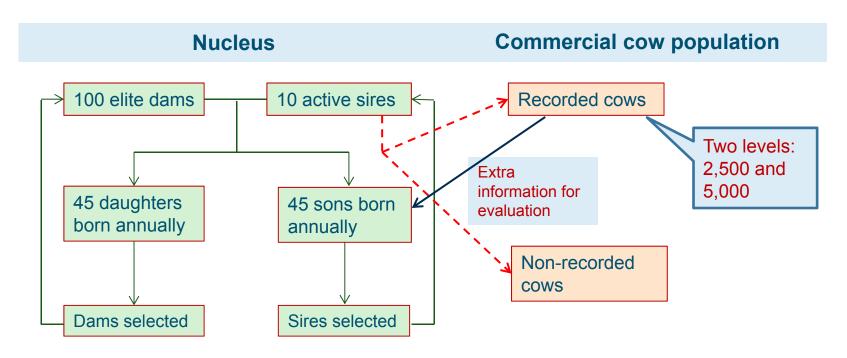
Temperate

Tropical

 GxE between regions estimated to be 0.49 (Ojango and Pollot, 2002)

Environment specific breeding programs

- Alternative approach: environment-specific breeding programs
- Limitation minimal and erratic pedigree and performance recording at farm level (Wasike et al., 2011)
- Negatively impacts genetic evaluation of selection candidates


Objective

- Small-sized nucleus dairy cattle breeding program?
- What selection strategy to adopt?
 - Response to selection
 - Accuracy
- We ignored inbreeding for this study

Materials and Methods

Deterministically simulated a nucleus program

SelAction (Rutten et al., 2004)

Materials and Methods

Selection strategies

Abbreviation	Description	
DP	Phenotypes of nucleus dams	
PT	Progeny testing	
GS	Genomic selection	
GS+DP	Genomic + nucleus dams	
GS+PT	Genomic + progeny testing	

Materials and Methods

- GS was implemented by mimicking a correlated trait with $h^2 = 1$ and genetic and phenotypic correlations were calculated following Dekkers (2007)
- Selected for a single trait total merit trait
- Truncation selection with 8 age-classes

Results – response to selection (ΔR)

Response for the basic DP scheme in genetic standard deviation (σ_a)

	Number of CRC		
Scheme	2,500	5,000	L (years)
DP	0.042	0.047	4.2

 For comparison alternative selection strategies were benchmarked against basic DP scheme and presented as a percentage

Results – response to selection (ΔR)

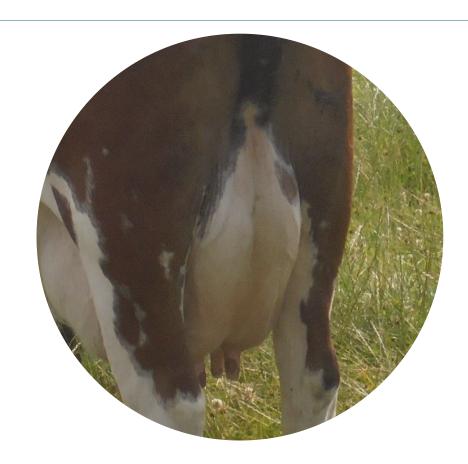
 ΔR Number of CRC 2,500 L (years) Scheme 5,000 13.5 6.2 PT 27.0 GS 24.3 70.3 3.0 4.2 GS+DP 24.3 43.2 GS+PT 16.2 6.2 29.7

Extra response as percentage of the response in DP schemes

For these results the pedigree is assumed to be known accurately

Results – accuracy (r_I)

	r_I		
	Number of CRC		
Scheme	2,500	5,000	
PT	0.62	0.73	
GS	0.21	0.30	
GS+DP	0.33	0.39	
GS+PT	0.64	0.74	


Conclusions

 Feasibility exists for creating genetic gains through nucleus programs with minimal performance recording

- GS will have the highest responses
- Lower accuracies in GS will be offset by the higher annual responses

Thank you for your attention!

charles.kariuki@wur.nl

