Across breed QTL detection and genomic prediction in French and Danish dairy cattle breeds

Irene van den Berg^{1,2,3}, B. Guldbrandtsen¹, C. Hozé^{2,3,4}, R. F. Brøndum¹, G. Sahana¹, D. Boichard^{2,3} and M. S. Lund¹

¹Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark, ²INRA, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France, ³AgroParisTech, UMR1313 Génétique Animale et Biologie Intégrative, Paris, France, ⁴UNCEIA, Paris, France

Introduction

- Across breed prediction in dairy cattle
- Low accuracy when using 50K/HD chips
- Sequence data: causative mutations
 → improve across breed prediction?

Objectives

I) How many QTL are shared across breeds?

2) How close should prediction markers be to the causative mutations?

I) How many QTL are shared across breeds?

QTL detection – Material & Methods

- HD genotypes, imputed from 50K chip
- Deregressed proofs for protein yield
- 5642 Nordic Holstein, 3130 French Holstein, 1238 Jersey, 2236 Montbéliarde, 1970 Normande and 1019 Danish Red bulls
- Single marker sire model
- First QTL detection within breed: p-value $\leq 10^{-6}$
- QTL shared across breed if there is a marker with p-value $\leq 10^{-5}$ within I Mb in second breed

QTL detection – Results – Chromosome I

Holstein DK

Danish Red

ဖ

ß

4

ო

2

-

0

Holstein FR

Montbeliarde

Normande

QTL detection – Results

	Holstein DK	Holstein FR	Montbéliarde	Normande	Jersey	Danish Red
n QTL	609	139	161	82	62	43

QTL detection – Results

QTL detection – Conclusion

A substantial part of QTL detected in one breed show a significant association in another breed

\rightarrow Can be targeted for across breed prediction

Across breed prediction

2) How close should prediction makers be to the causative mutations to enable across breed prediction?

Across breed prediction - Methods

Following de los Campos et al. (2013):

- Genomic relationship matrix at causative mutations:
 - 100 randomly sampled variants
- Genomic relationship matrix at prediction markers:
 - 50K / HD: SNP on 50K / HD chip
 - 50K / HD closest: for each causative mutation, the closest 50K / HD marker
 - Two I Kb intervals on both sides of the causative mutations, distance between causative mutations and intervals between Ib and IMb

Intervals with prediction markers

Causative mutation

- Genomic relationship matrix at causative mutations:
 - 100 randomly sampled variants
- Genomic relationship matrix at prediction markers:
 - 50K / HD: SNP on 50K / HD chip
 - 50K / HD closest: for each causative mutation, the closest 50K / HD marker
 - Two I Kb intervals on both sides of the causative mutations, distance between causative mutations and intervals between Ib and IMb
- Sequences, chromosome I:
 - 122 Holstein, 27 Jersey, 28 Montbéliarde, 23 Normande and 45 Danish Red
 - Chromosome I,~I,5 million polymorphisms
- Each scenario was repeated 50 times

Across breed prediction - Results

 \rightarrow I-(I-b)² decreases when distance between prediction markers and causative mutations increases, faster decrease across breed

Across breed prediction - Results

Across breed prediction - Results

→ Using all 50K/HD markers → lower $I-(I-b)^2$ compared to sequence, but higher when only the markers closest to the causative mutations are used

Across breed prediction - Conclusions

- Prediction markers close to the causative mutations:
 - I-(I-b)² decreases when the distance between prediction markers and causative mutations increases
 - This decrease is faster across breed than within breed
- 50K/HD markers:
 - Lower $I-(I-b)^2$ when all markers are used
 - Highest I-(I-b)² when only the markers closest to the causative mutations are used

 \rightarrow Best prediction when a low number of markers close to the causative mutations is used

Conclusions

- A substantial part of QTL detected in one breed show a significant association in another breed
- This shared variance can be predicted across breed if prediction markers very close to the causative mutations are used
- Sequence data → locate QTL → select prediction markers
 → Improve across breed prediction