Sire-based genomic prediction of heterosis in White Leghorn crossbreds

EN Amuzu-Aweh

H Bovenhuis, D-J de Koning and P Bijma

- Heterosis is an essential element of crossbreeding schemes
- Which parental lines should be mated to maximize benefits from heterosis?
- Can we predict heterosis?
 - long history with inconsistent results
 - based on limited number of markers/small data sets

Prediction of heterosis with 60K SNPs:

•
$$\frac{\sum_{n=1}^{N} (p_i - p_j)^2}{N}$$
 predicts heterosis with an accuracy of 0.5 (Amuzu-Aweh et al., 2013)

We are able to identify suitable pure-line combinations

Exploit line-level heterosis Reduce dependency on field trials of crossbreds

 p_i = allele frequency in sire line, p_j = allele frequency in dam line

Research question

Can we exploit heterosis at the sire level?

- Utilise the variation between sires from the same pure-line
- Benefit more from heterosis

Derive equation to predict heterosis

Assumptions:

Heterosis is due to dominance deviations (*d*) *d* at each locus is independent of the allele frequency

Heterosis =
$$[(p_i - p_j)^2 + (p_{s_i} - p_i)(1 - 2p_j)] \bullet d$$

Heterosis is a function of heterozygosity excess due to between- and within-line differences in allele frequencies

 p_i = allele frequency in sire line , p_{si} = allele frequency in the sire p_i = allele frequency in dam line

Data:

- ~3 450 sires from 4 lines genotyped at 60K SNPs
- 6 dam lines with known allele frequencies
- Phenotypic records from 16 crosses
 35 000 egg number records (EN)
 26 000 egg weight records (EW)

Model:

$$y_{s_{i}j} = \text{sire_line}_{i} + \text{dam_line}_{j} + \beta \overline{x_{s_{i}j}} + \dots + e_{s_{i}j}$$
$$= \frac{\sum_{n=1}^{N} [(p_{i} - p_{j})^{2} + (p_{s_{i}} - p_{i})(1 - 2p_{j})]}{N}$$

Results

•
$$x_{s_ij}$$
 ranged from 0.08 to 0.18

•
$$\hat{\beta}_{EN} = 93.5$$
 (s.e = 18.3)

•
$$\hat{\beta}_{EW} = 12.9$$
 (s.e = 2.7)

Predicted heterosis_{trait, s_ij} =
$$\hat{\beta}_{trait} \cdot \overline{x}_{s_i j}$$

Predicted heterosis for Egg number and Egg weight

Variance explained by components of \boldsymbol{x}

$$x_{s_i j} = \left[(p_i - p_j)^2 + (p_{s_i j} - p_i)(1 - 2p_j) \right]$$

Between-line accounted for 99.00%

Within-line accounted for 0.72%

Individual sire information did not explain much

Variance explained by components of \pmb{x}

Regression on the between- and within-line components

Egg number						Egg weight			
✓ s _i j	E	stimate	e Se	p-value	· /~ -	T S _i J	Estimate	se	p-value
					Ful	X	$\overline{}$		
	β	93.5	18.3	3.4 E-7			12.9	2.7	1.1 E-6
					Compo	nents			
	β_1	92.5	19.3	2.2 E-6			12.9	2.8	4.7 E-7

Single SNP regression on $x_{s_i j}$

- Identified ~12K SNPs significant for predicting heterosis
- Larger variance between sires
- Bigger values of predicted heterosis

Conclusions

Heterosis can be predicted at the sire level

- Within-line sire variance contributes little to heterosis
- However, if sire genotypes are available, variance can be exploited
- Method may work better if genomic regions affecting heterosis are identified

Thanks for your attention

Acknowledgements:

- Heterosis can be predicted at the sire level
- Within-line sire variance contributes little to heterosis
- However, if sire genotypes are available, variance can be exploited
- Method may work better if genomic regions affecting heterosis are identified

