



# Model comparison based on genomic predictions of litter size and piglet mortality

#### X. Guo, O. F. Christensen, T. Ostersen, D. A. Sorensen, Y. Wang, M. S. Lund, G. Su















- > Xiangyu (Carol)
  - > Ph.D student



- > Center for Quantitative Genetics and Genomics
- > Department of Molecular Biology and Genetics
- > Aarhus University, Denmark









- Introduction
- > Materials & Methods
- Results & Discussion
- Conclusions









- Introduction
- > Materials & Methods
- Results & Discussion
- Conclusions





### Litter size & mortality

- Litter size & mortality
  - > reproductive traits of major economic importance
- Total number born
  - > litter size at weaning f mortality f
- Litter size at d 5
  - > litter size at weaning mortality







### **Genomic selection**

- Genomic selection
  - > widely used in livestock breeding
- Advantage of genomic selection
  - > higher accuracy of prediction in pigs
- Single-step
  - > using both genotyped and non-genotyped animals





### Objective

Compare the accuracy of traditional BLUP, genomic
BLUP, and single-step methods, for genetic evaluation
of litter size and piglet mortality in Danish Landrace
and Yorkshire populations









#### Introduction

### Materials & Methods

#### Results & Discussion

#### Conclusions









#### Phenotypes

- > TNB: total number of piglets born
- > LS5: litter size at five days after birth
- > Mort: mortality rate before day 5
- Genotypes
  - > Illumina PorcineSNP60 BeadChip
- Pedigree
  - > traced back to 1994







|                      | Landrace | Yorkshire |
|----------------------|----------|-----------|
| Birth                | 1998 te  | o 2012    |
| Litter               | 778,095  | 472,001   |
| Sow                  | 309,362  | 190,760   |
| Pedigree             | 332,795  | 207,255   |
| Genotyped individual | 3,445    | 3,372     |
| Boar                 | 1,366    | 1,241     |
| Sow                  | 2,079    | 2,131     |
| Marker               | 38,435   | 38,631    |







|                      | Landrace | Yorkshire |
|----------------------|----------|-----------|
| Birth                | 1998 te  | o 2012    |
| Litter               | 778,095  | 472,001   |
| Sow                  | 309,362  | 190,760   |
| Pedigree             | 332,795  | 207,255   |
| Genotyped individual | 3,445    | 3,372     |
| Boar                 | 1,366    | 1,241     |
| Sow                  | 2,079    | 2,131     |
| Marker               | 38,435   | 38,631    |





### **Statistical models**

#### > BLUP

- > pedigree-based relationship matrix
- > all records
- > GBLUP
  - > marker-based relationship matrix
  - > pseudo records of genotyped animals
- Single-step
  - > combined relationship matrix constructed from marker and pedigree
  - > all records





### Validation

Cut-off birth date: 1<sup>st</sup> April, 2012 

$$\succ r^2 = \frac{cor^2(EBV, y_c)}{h_{y_c}^2}$$

$$\succ \quad y_c = \hat{a} + \frac{\sum \hat{e_i}}{n_p}$$



Number of validated animals









#### Introduction



#### > Results & Discussion

#### Conclusions







### **Descriptive statistics and** $h^2$

| Breed     | Trait | Average | h <sup>2</sup> |
|-----------|-------|---------|----------------|
| Landrace  | TNB   | 15.04   | 0.11           |
|           | LS5   | 12.25   | 0.09           |
|           | Mort  | 0.18    | 0.09           |
| Yorkshire | TNB   | 15.54   | 0.09           |
|           | LS5   | 12.54   | 0.08           |
|           | Mort  | 0.18    | 0.09           |







### Descriptive statistics and $h^2$

| Breed     | Trait | Average | $h^2$ |
|-----------|-------|---------|-------|
| Landrace  | TNB   | 15.04   | 0.11  |
|           | LS5   | 12.25   | 0.09  |
|           | Mort  | 0.18    | 0.09  |
| Yorkshire | TNB   | 15.54   | 0.09  |
|           | LS5   | 12.54   | 0.08  |
|           | Mort  | 0.18    | 0.09  |

> Average TNB, LS5 and Mort were around 15, 12 and 0.18







### Descriptive statistics and $h^2$

| Breed     | Trait | Average | $h^2$ |
|-----------|-------|---------|-------|
| Landrace  | TNB   | 15.04   | 0.11  |
|           | LS5   | 12.25   | 0.09  |
|           | Mort  | 0.18    | 0.09  |
| Yorkshire | TNB   | 15.54   | 0.09  |
|           | LS5   | 12.54   | 0.08  |
|           | Mort  | 0.18    | 0.09  |

- Average TNB, LS5 and Mort were around 15, 12 and 0.18
- The estimates of heritability were low





| Breed | Trait | All  |             | Genotyped |       |             | Non-genotyped |             |
|-------|-------|------|-------------|-----------|-------|-------------|---------------|-------------|
|       |       | BLUP | Single-step | BLUP      | GBLUP | Single-step | BLUP          | Single-step |





| Breed Trait |      | All         |        | Genotyped |             |       | Non-genotyped |                    |
|-------------|------|-------------|--------|-----------|-------------|-------|---------------|--------------------|
|             | BLUP | Single-step | BLUP   | GBLUP     | Single-step | BLUP  | Single-step   |                    |
| Landrace    | TNB  | 0.128       | 0.155* | 0.095     | 0.115       | 0.116 | 0.126         | 0.150 <sup>*</sup> |







| Breed Trait |       | All   |             | Genotyped |       |             | Non-genotyped |                    |
|-------------|-------|-------|-------------|-----------|-------|-------------|---------------|--------------------|
|             | Trait | BLUP  | Single-step | BLUP      | GBLUP | Single-step | BLUP          | Single-step        |
| Landrace    | TNB   | 0.128 | 0.155*      | 0.095     | 0.115 | 0.116       | 0.126         | 0.150 <sup>*</sup> |







|           |       | All   |                    | Genotyped |        |             | Non-genotyped |                    |
|-----------|-------|-------|--------------------|-----------|--------|-------------|---------------|--------------------|
| Breed     | Trait | BLUP  | Single-step        | BLUP      | GBLUP  | Single-step | BLUP          | Single-step        |
| Landrace  | TNB   | 0.128 | 0.155*             | 0.095     | 0.115  | 0.116       | 0.126         | 0.150 <sup>*</sup> |
|           | LS5   | 0.071 | 0.081              | 0.004     | 0.080  | 0.018       | 0.072         | 0.079              |
|           | Mort  | 0.066 | 0.086*             | 0.030     | 0.229* | 0.205*      | 0.068         | 0.081*             |
| Yorkshire | TNB   | 0.148 | 0.178 <sup>*</sup> | 0.251     | 0.241  | 0.451       | 0.143         | 0.163 <sup>*</sup> |
|           | LS5   | 0.061 | 0.083*             | 0.120     | 0.245  | 0.334       | 0.059         | 0.074 <sup>*</sup> |
|           | Mort  | 0.074 | 0.085              | 0.044     | 0.115  | 0.128       | 0.076         | 0.084              |
| Mean      |       | 0.091 | 0.111              | 0.091     | 0.171  | 0.209       | 0.091         | 0.105              |

> Methods with marker information provided more accurate predictions





|           |       | All   |                    |       | Genotyped | Non-genotyped |       |                    |
|-----------|-------|-------|--------------------|-------|-----------|---------------|-------|--------------------|
| Breed     | Trait | BLUP  | Single-step        | BLUP  | GBLUP     | Single-step   | BLUP  | Single-step        |
| Landrace  | TNB   | 0.128 | 0.155*             | 0.095 | 0.115     | 0.116         | 0.126 | 0.150 <sup>*</sup> |
|           | LS5   | 0.071 | 0.081              | 0.004 | 0.080     | 0.018         | 0.072 | 0.079              |
|           | Mort  | 0.066 | 0.086*             | 0.030 | 0.229*    | 0.205*        | 0.068 | 0.081*             |
| Yorkshire | TNB   | 0.148 | 0.178 <sup>*</sup> | 0.251 | 0.241     | 0.451         | 0.143 | 0.163*             |
|           | LS5   | 0.061 | 0.083*             | 0.120 | 0.245     | 0.334         | 0.059 | 0.074 <sup>*</sup> |
|           | Mort  | 0.074 | 0.085              | 0.044 | 0.115     | 0.128         | 0.076 | 0.084              |
| Mean      |       | 0.091 | 0.111              | 0.091 | 0.171     | 0.209         | 0.091 | 0.105              |

- > Methods with marker information provided more accurate predictions
- Single-step method provided most accurate predictions









- > Conclusions





### Conclusions

- Genomics can increase reliabilities of EBV for litter size and piglet mortality
- Increased reliabilities were observed for genotyped as well as for non-genotyped animals
- Single-step is a useful method for practical genomic prediction



CENTER FOR QUANTITATIVE GENETICS AND GENOMICS

### Thanks for your attention

Ole F. Christensen Tage Ostersen Daniel A. Sorensen Yachun Wang Mogens S. Lund Guosheng Su









### Take-home messages

- Genomics can increase reliabilities of EBV for litter size traits and piglet mortality
- Increased reliabilities were observed for genotyped as well as for non-genotyped animals
- Single-step is a useful method for practical genomic prediction