

Agrar- und Ernährungswissenschaftliche Fakultät

CAU

Christian-Albrechts-Universität

zu Kiel
Institut für Tierzucht und Tierhaltung

Effect of nutrient restriction during pregnancy in heifers on maternal and offspring's metabolism

Steffi Wiedemann¹, Ursula Köhler, Sonja Spiegler, Frieder J. Schwarz², Martin Kaske³

- ¹ Animal Health, Institute of Animal Breeding and Husbandry, University of Kiel
- ² Physiology Weihenstephan & Animal Nutrition, TU München
- ³ Department for Farm Animals, Vetsuisse Faculty, University of Zurich

Background

Epidemiological studies in humans

 An unfavorable intrauterine supply influences the metabolic and endocrine pattern of the fetus leading to reduced birth weights and higher risks of developing a metabolic syndrome in adulthood

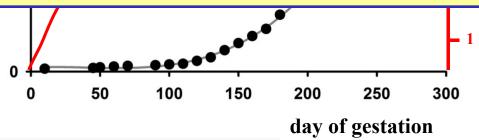
Experimental studies in rodents

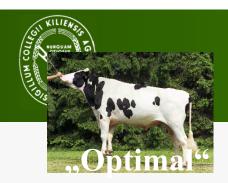
 Early adaptations to a short nutritional stimulus permanently change the physiology and metabolism of the organism and continue to be expressed even in the absence of the stimulus that initiated them.

"PUP IN A CUP" MODEL

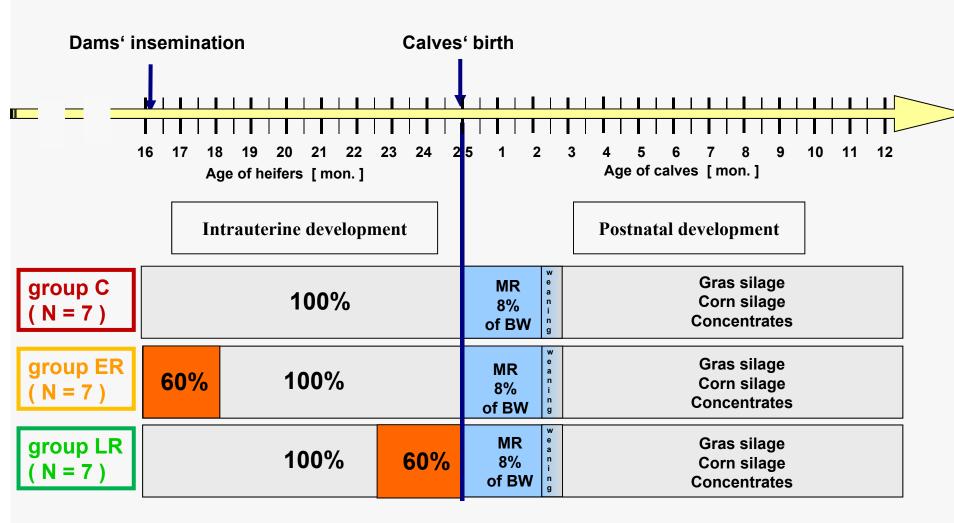
Experimental studies in food animals (mainly pig, sheep, beef cattle)

 Feed restriction during pregnancy seems to affect long-term metabolism, fertility, milk yield and carcass quality of the offspring.

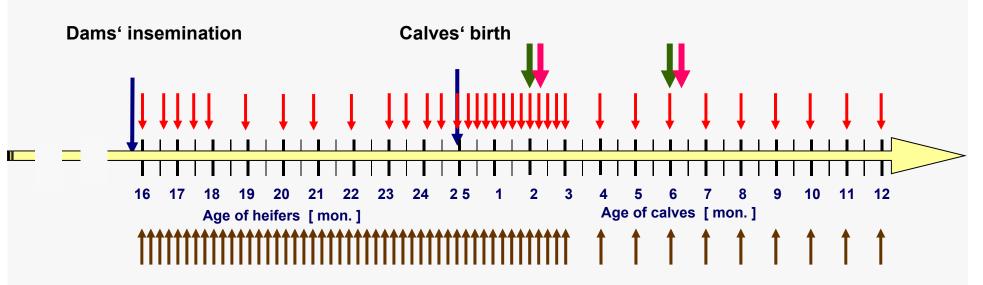



Background: - Fetal and placental growth -

- Placental growth and tissue/organ development of the embryo/fetus are mainly determined during early stages of gestation
- 75 % of fetal growth takes place during the last two months of gestation



It was the objective to characterize the impact of maternal nutrition during early and late pregnancy (a) on metabolism and placental indices of growing heifers and (b) on growth and key blood metabolites of their calves during the first year of life



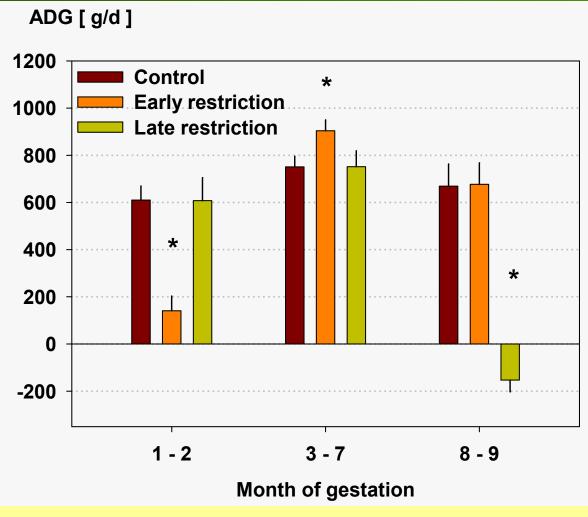
Experimental design - Animals -

Experimental design - Parameters -

Body weights

Serum and plasma: metabolic key parameters

Placenta: weight and size of placentomes

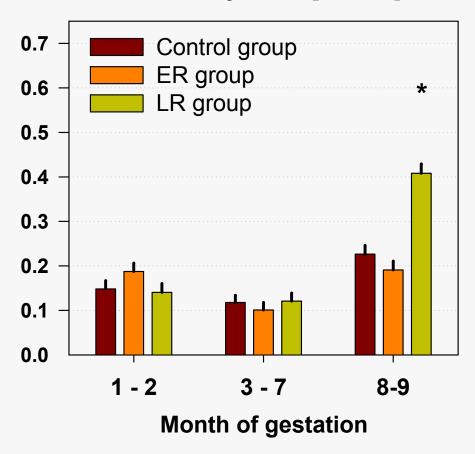

Hyperinsulinemic euglycemic clamp: peripheral insulin response (6 mU bovine insulin/kg body weight for 3 hours)

Hyperglycemic clamp: pancreatic insulin response (increase of basal blood glucose by 3 mM for 3 hours)

Statistical analysis: MIXED model with repeated measurements (SAS 9.3)

Results - Average daily weight gain of dams -

A 40% reduction of heifers' nutrient intake during early and late gestation results in reduced weight gains.


(Spiegler et al., Ani. Rep. Sci. 2014)

Results

- Metabolic key parameters of dams -

Non-esterified fatty acids [mmol/l]

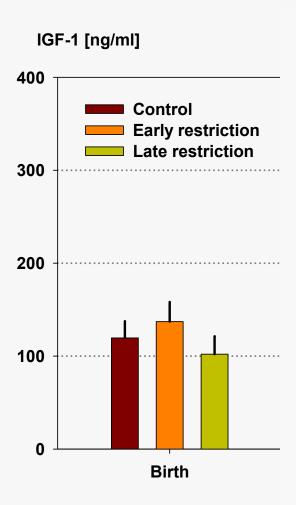
A 40% reduction of heifers' nurient intake during early and late gestation only resulted in changes of the NEFA levels towards parturition.

Results - Placental indices -

	Control	Early restriction	Late restriction	<i>p</i> -value	
				Group	Season
Weight of placenta [kg]	5.4 ± 0.4	6.0 ± 0.5	4.8 ± 0.4	0.25	0.81
Area of placen- tomes [cm ²]	5,157 ± 426	5,310 ± 567	5,160 ± 530	0.97	0.91

A 40% reduction of heifers' nutrient intake during early and late gestation had no effect on assessed placental indices

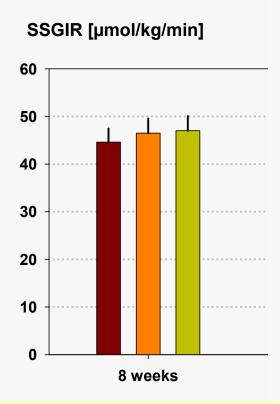
Results - Growth of calves-



A 40% reduction of heifers' nutrient intake during early and late gestation had no effect on weight development of calves.

Results

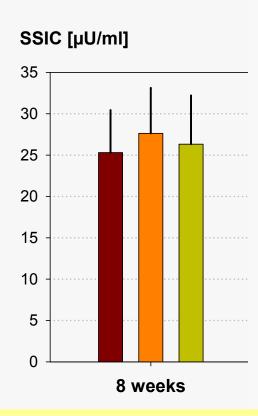
- Metabolic key parameters in blood of calves -



A 40% reduction of heifers' nutrient intake during early and late gestation has no effect on metabolic key parameters (e.g. insulin, glucose and IGF-1) of calves.

Results - Peripheral insulin response -

The steady-state glucose infusion rate reflects the peripheral response to an increased blood insulin concentration.



A 40% reduction of heifers' nutrient intake during early and late gestation has no effect on the peripheral insulin response during the first 6 months of life.

Results - Pancreatic insulin response -

The steady-state insulin concentration reflects the pancreatic response to an increased blood glucose concentration.

A 40% reduction of heifers' nutrient intake during early and late gestation has no effect on the pancreatic insulin response during the first 6 months of life.

Conclusions

The plane of maternal nutrition in early and late pregnancy

- affects growth of pregnant heifers
- resulted in increased fat mobilization towards the end of pregnancy of heifers
- did neither induce significant short-term nor longterm effects on growth, metabolism and glucose homeostasis in heifer calves

Agrar- und Ernährungswissenschaftliche Fakultät

Christian-Albrechts-Universität zu Kiel

Institut für Tierzucht und Tierhaltung

Thank you for your attention!

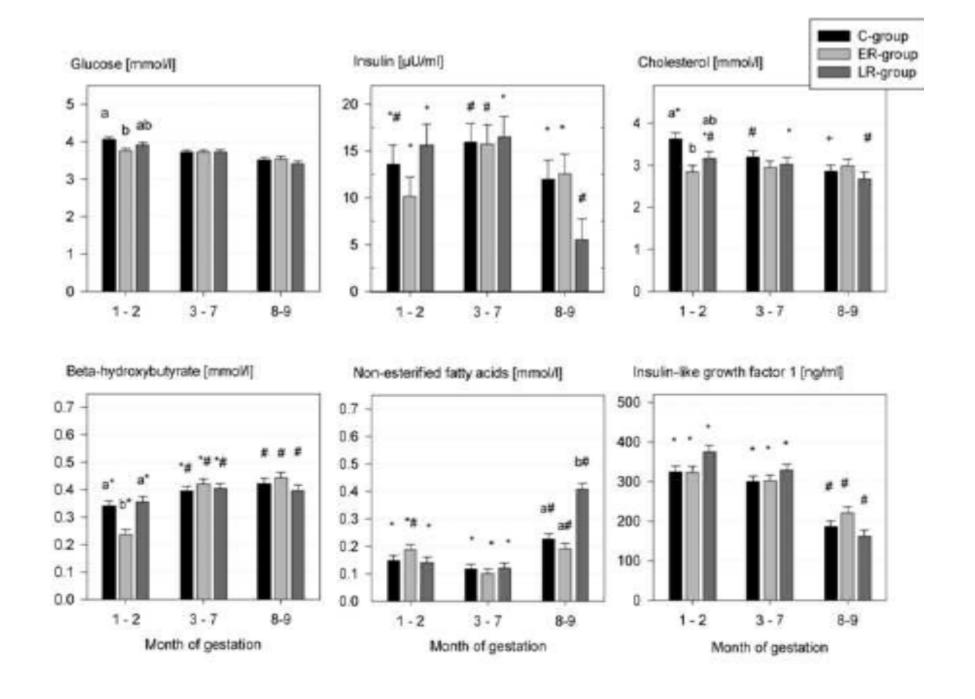
Effect of nutrient restriction during pregnancy in heifers on maternal and offspring's metabolism

Steffi Wiedemann¹, Ursula Köhler, Sonja Spiegler, Frieder J. Schwarz², Martin Kaske³

- ¹ Animal Health, Institute of Animal Breeding and Husbandry, University of Kiel
- ² Physiology Weihenstephan & Animal Nutrition, TU München
- ³ Department for Farm Animals, Vetsuisse Faculty, University of Zurich

Effect of feeding level on birth weight

✓ Effects of maternal undernutrition on fetal weight in early pregancy are inconsistent


Author	N	Restriction period (day)	Restriction level	Fetal growth (slaughter)
Wallace (1948)		28–91		No effect (day 91)
Wallace (1948)		0–90		No effect (day 90)
Everitt (1964)		0–90		Reduced (day 90)
Parr et al. (1982)	228	1-3 5,10,15	,20,30 or 40 kg/d	-12,6% on day 35 (10kg / 30kg)
McCrabb et al. (1986)		0–96		No effect (day 96)
McCrabb et al. (1992)		30–96		No effect (day 96)
Arnold et al. (2001)		50–90		No effect (day 90)
Vonnahme et al. (2003)	19	28–78	- 50 %	- 33 % on day 78
Vincent et al. (1985)		0–60		Reduced (birth)
Robinson et al. (1989)		0–40		Reduced (day 90)
Heasman et al. (1998)		28–77		No effect (day 145)
Steyn et al. (2001)		0–70		No effect (day 130)

Effect of feeding level on birth weight

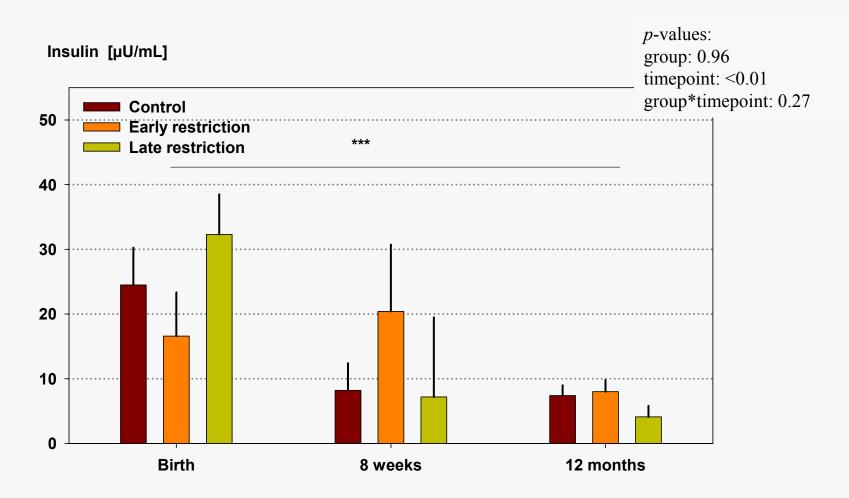
✓ Maternal undernutrition in sheep reduces fetal growth in late pregnancy

Author	Restriction period (day)	restriction level	Fetal growth (day 130-145)
Wallace (1948)	91–144		Reduced
	28–144		Reduced
Robinson (1977)	0–145		Reduced
Robinson et al. (1979)	0–145		Reduced
Holst et al. (1986)	1–145		Reduced
Mellor (1983) and (1987)	90–145		Reduced
Faichney et al. (1987)	90–145		Reduced
McCrabb et al. (1986)	0–142	- 20%	No effect
Kelly (1992)	90–145		Reduced
Arnold et al. (2001)	50–130		Reduced

Feeding ration	Composition [% of DM]	Меап е пегду [МЈ МЕМД DM]	Mean crude protein [% of DM]	
TMR 1 (control ration)				
G rass sllage	71		14.1	
Matze sitage	17	9.8		
Staw	12			
TMR 2 (restricted cation)				
G rass sitage	43			
Matze sitage	10	7.7	10.7	
Straw	47			
Concentrate				
Barley	149			
Matze	24.8			
Wheat	21.8	12.7	19.2	
Soybean mealextract	20.1	12.1	19.2	
Sugarbeetpulp	15.2			
Wherab'	2.1			
Feed line	1.1			

^{742.5%} calcium carbonate, 21日% sodium chlorite, 13.5% magnesium-phosphate, 9.5% mono-calcium-phosphate, 4.日% apple pomace, 3.2% magnesium oxitle, 1.8% rape oil, trace elements, ultamins A and E

Table 3: Least squares means of daily weight gain, energy intake and crude protein intake during the experimental period ¹


	Treatment group			p-value	
	Control	Early restriction	Laterestriction	group	weight at insemination
Energy intake					
Period 1(MJME/d)	80.2 ± 2.0	48.5 ± 2.1*	83.0 ± 2.2	<0.0001	0.005
Period 2 (MJ ME/d)	86.1 ± 1.5	85.9 ± 1.5	86.6 ± 1.5	0.93	0.04
Period 3 (MJ ME/d)	126.2 ± 2.9	123.5 ± 3.0	69.6 ± 3.1*	<0.0001	0.76
Crude protein intake					
Period 1(g/d)	1,142 ± 35	682 ± 36*	1,183 ± 37	<0.0001	0.22
Period 2(g/d)	1,230 ± 23	1,233 ± 23	1,224 ± 24	0.94	0.44
Period 3(g/d)	1,489 ± 38	1,438 ± 39	809 ± 40*	<0.0001	0.47
Average daily gain (ADG)					
Period 1(g/d)	610 ± 60	141 ± 62*	608 ± 97		
Period 2(g/d)	751 ± 45	904± 46*	752 ± 67	<0.0001	0.84
Period 3(g/d)	669 ± 94	677 ± 91	-153 ± 50*		
Total ADG during gestation (g/d)	697±30	709 ± 31	582 ± 32*	0.01	0.84

Period 1: first two month of pregnancy; Period 2: third to end of seventh month of pregnancy; period 3: last two months of pregnancy

^{*} group differs to other groups during respective period

Results: - Blood parameters -

A 40% reduction of heifers' energy intake during early and late gestation has no effect on metabolic key parameters in blood of calves.

Results

- Metabolic key parameters in blood of calves -

✓ no differences in cholesterol, Non-esterified fatty acids, beta-hydroxybutyrate, glucose, insulin and IGF-1 concentration in the blood between groups