

Variable nutritional trajectory contributes to the robustness of beef cows whatever their body condition at calving

Anne De La Torre, F. Blanc, P. D'Hour, J. Agabriel

INRA Saint-Genès-Champanelle, UMR Herbivores & Experimental Unit Monts d'Auvergne

01 Context

Beef suckling cows & french beef cattle production systems

Charolais cows : late maturing beef breed carcass weight ≈ 450 kg

The concept of ROBUSTNESS:

Numerous definitions

The robustness is a property that accounts of the ability of a system to maintain its function despite external or internal perturbations

Kitano, 2004

⇒At the animal level, the robustness is defined as its ability to maintain its functioning and being resilient when facing environmental disturbances

Strandberg, 2009

⇒ Such a capacity relies on adaptive abilities of animals that may involve trade-off between life functions when environment becomes limiting

From a systemic point of view

Main biological functions

- growth, maintain itself
- produce
- reproduce

Over a productive cycle

⇒ Trade-off between functions

Cows have to reach an <u>optimal resources allocation</u> to <u>achieve functions</u> whatever the environmental constraints

That question has been considered in high-producing dairy cows

(Kirkland and Gordon, 2001 Friggens and Newbold 2007, Martin and Sauvant, 2010...)

Robustness of suckling beef cows?
What indicators?

The cow as an active system

Eresidual = E intake - E (production and tissue growth)

Objectives:

To propose an indirect approach to apprehend robustness in beef cows

⇒ Differences in Eresid between cows experiencing from calving a variable nutritional trajectory and cows subjected to a non limiting (=stable) nutritional trajectory

Test the impact of initial body condition at calving on Eresid

The nutritional challenge

involving adaptive response to changing environment

Recovery grazing period (76 days)

40 ares per cow/calf pair

Non-limited permanent pasture with high nutritive quality

Calculation method Working hypothesis

expressed in Net Energy for lactation in MJ

Eresid = Eintake - Elactation - Efoetus +/- Emobilized / retained tissues

measured

calculated

Constraining period

Feed offered and refused

calculated

- Weight-suckle-Weight method (Le Neindre, 1973)

 \rightarrow E lact. = 3.2 MJ x kg of milk drunk

- Adipose cell size measurements
- Allometric equations (Robelin & Daenicke, 1980)
- Compocow model (Garcia & Agabriel, 2008)

Recovery Period

Estimation of individual intake of grazed grass using fill unit system (Faverdin et al, 2011)

NE tissues for 1 kg body mass change = 66.7MJ x %lipids + 39MJ x %proteins

__03 Results

Milk production & ADG of calves

Milk production is maintained suggesting the priority of lactation function in beef cows

Body composition changes

Over the nutritional challenge (196 days)

End of the nutritional challenge: recovery of LW and body condition

→ adaptive trajectories: mobilization and reconstitution of body reserves

Eresid variations over the nutritional challenge (196 days)

 \triangle Eresid = 35% according to energy level and body reserves at calving

Energy allocation in Fat and Thin cows

- ⇒Energy put in milk is similar between groups (≈ 30% Eintake)
- ⇒ Body reserves buffer differences between energy supply and requirements

Eresid (MJ/d/kg^{0.75})

- Thin cows exhibited the same Eresid changes than fat cows

=> no differences in energy allocation

U4 Conclusions / Perspectives

Eresid changes over productive cycle

→ Ability of beef cows to maintain milk production in changing environment

Our experimental design allows to observe Eresid changes

⇒ ΔEresid : 35%

⇒ Eresid changes could be an indirect criteria of robustness since reflect safeguarding energy allocation to life functions

Further investigations to validate:

Relevance of Eresid as a trait of robustness in changing nutritional environment

NUTRITIONAL CHALLENGE

Theoretical requirements

