

Genetic variation and consistency among feed efficiency traits in Holstein and Jersey cows

Sophie van Vliet, Jan Lassen & Peter Løvendahl

Feed efficiency

- Importance
 - Feeding costs
 - Environment

- Difficulties
 - Recording feed efficiency traits

Holstein vs. Jersey cows

- Size/weight
- Milk production
- Intake capacity

Aims

- Do genetic parameters of feed efficiency traits differ between breeds?
- Do these parameters change throughout lactation?

Materials and methods

- Danish Cattle Research Centre
- 518 first parity Holstein and 264 Jersey cows
- Weekly records from weeks 1-40 of lactation
 - Dry matter intake (DMI)
 - Energy corrected milk yield (ECM)
 - Live weight (LW)
 - Metabolic body weight (MBW) = LW^{0.75}
- Lactation divided in ten four week periods

Model

• Within period model:

```
DMI = \mu
```

- + week
- + year
- + season
- + management
- + animal
- + permanent environment
- + residual

Model

• Within period model:

```
DMI = \mu
```

- + week
- + year
- + season
- + management
- + animal
- + permanent environment
- + residual

Model

• Within period model:

```
DMI = \mu
```

- + week
- + year
- + season
- + management
- + animal
- + permanent environment
- + residual

Dry matter intake - heritability

Dry matter intake - repeatability

Genetic correlations

Bivariate model (DMI, ECM, MBW)

```
Y = \mu
```

- + week
- + year
- + season
- + management
- + animal
- + permanent environment
- + residual

Genetic correlations

		DMI	ECM	MBW
Holstein	DMI	0.28	0.75	0.48
	ECM		0.31	0.00
	MBW			0.47
Jersey	DMI	0.33	0.91	0.45
	ECM		0.38	-0.14
	MBW			0.36

```
DMI = \mu
```

- + week
- + year
- + season
- + management
- + $\beta_1 \cdot ECM$
- + $\beta_2 \cdot MBW$
- + β_3 ·LWchange
- + animal
- + permanent environment
- + residual

```
DMI = \mu
```

- + week
- + year
- + season
- + management
- + B₁·ECM
- $+ \beta_2 \cdot MBW$
- + B₃·LWchange
- + animal
- + permanent environment
- + residual

```
DMI = \mu
```

- + week
- + year
- + season
- + management
- + $\beta_1 \cdot ECM$
- + $\beta_2 \cdot MBW$
- + β_3 ·LWchange
- + animal
- + permanent environment
- + residual

```
DMI = \mu
```

- + week
- + year
- + season
- + management
- + $\beta_1 \cdot ECM$
- + $\beta_2 \cdot MBW$
- + $\[\]_3 \cdot LWchange$
- + animal
- + permanent environment
- + residual

Adjusted feed intake - heritability

Adjusted feed intake - repeatability

Conclusion

- Dry matter intake and adjusted feed intake are heritable traits
- Genetic parameters do not differ significantly between breeds or throughout lactation