In vitro comparison of cellulolytic and hemicellulolytic enzyme activities from game herbivores

Fabian N. FON

Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa. Email: FonF@unizulu.ac.za

An overview of talk

- 1. Introduction
- 2. Objectives
- 3. Experiments
- 4. Findings
- 5. Conclusion
- 6. Application

Introduction

- Livestock ~ 33 % the total protein in human diets
- High demand for meat as protein demand increases yearly
- Especially in Africa = plant protein sources scarce
- World's human population is about 6.8 billion
- World's Growth rate = 1.2%/yr = 81.9 million
- Africa contributing $\sim 15\% = 1.02$ billion
- Africa growth rate = 2.2 %/yr = 22.5 million
- Europe growth rate = 0.3%/yr = 2.7 million

Introduction

- How can animal protein be increased to sustain the ever increasing demand with increasing human population ?
- Simple !!!, by increasing animal production.
- Simple???
- Lets ask the farmers both commercial and small scale.
- Daunting task of high feed cost and scarcity?
- Ask the beef farmers?
- In winter, most of them are broke, feed scarcity, high cost, sell most of their animals to avoid death
- Yet, hay, crop residues and agricultural by-products abundant !!!

- So what is stopping this animals from harnessing energy from these sources?
- Chemical structure these high energy polysaccharides (cellulose, hemicellulose and pectin)
- Herbivores depends on microbes to harnessed energy

• Researchers can do something about it

Introduction ...

- Different studies that embarkes on enhancing fibre hydrolysis includes:
- Single strain microbes, mixed microbial culture
- Pure enzyme systems, components of cellulase enzymes
- Mixed enzyme systems (synergism)
- Ferment feed (silage)
- Chemical treatment

Introduction ...

- Focus of interest are cellulolytic enzymes
 - Feed supplementation did increase hydrolysis⁵
 - Limited information is available on
 - how much is being expressed
 - how active they are.

Objectives

1. Sample four game herbivores microbial ecosystems (**buffalo**, **impala**, **wildebeest llama**)

Fishing for systems with;

- High enzyme expression (concentrations)
- High enzyme activity (activeness)
- 2. Does high expression imply high activity?
- 3. Investigate synergism among ecosystems

Sample collection

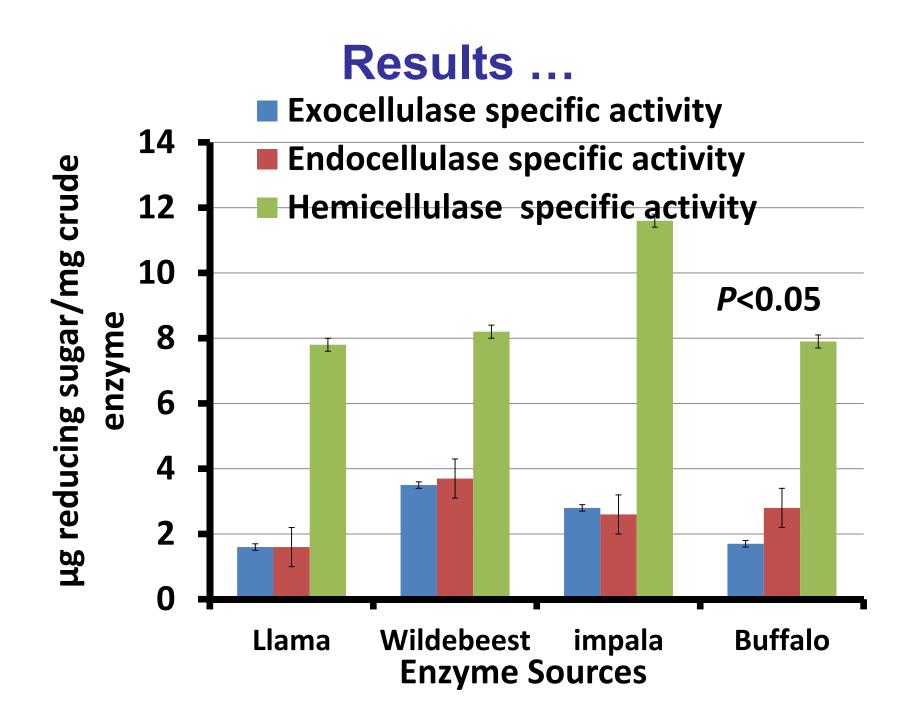
- Faces collection, *in situ*
- 50ml faeces + 100ml salivary buffer, mixed and squeezed through cheese cloth for faecal inoculum
 - 1 g (maize stover + Lucerne) + 67 ml salivary buffer + 33 ml Faecal inocula
 - Incubated for 72 hr at 39°C (anaerobic environment)

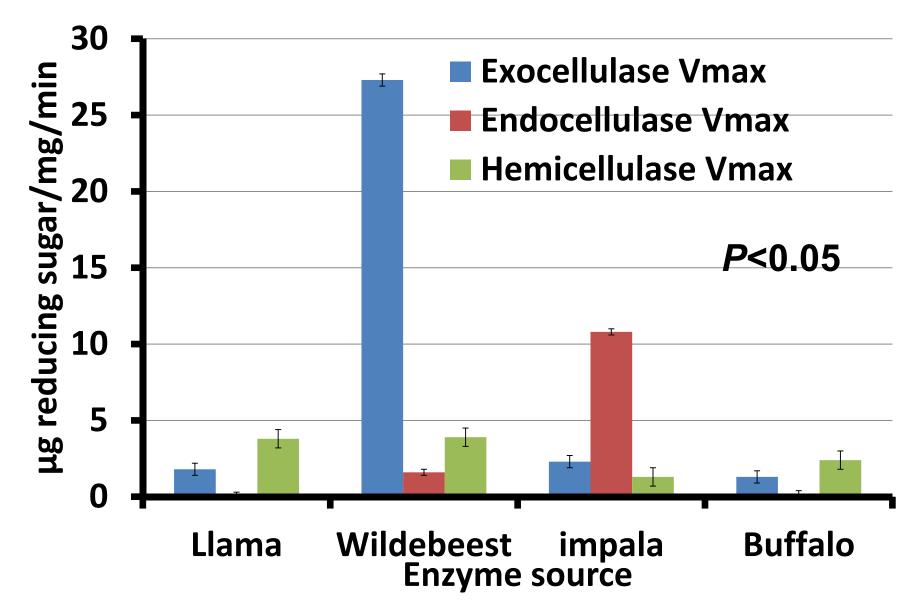
Sample collection

- 30 ml of 72 h culture was used for crude enzyme extraction
- Sonication of samples (break cells)
- Proteins precipitated using 60% ammonium sulfate.
- Protein concentration measured as described by Bradford.
- pH activity optimised using carboxymethyl cellulose as substrate

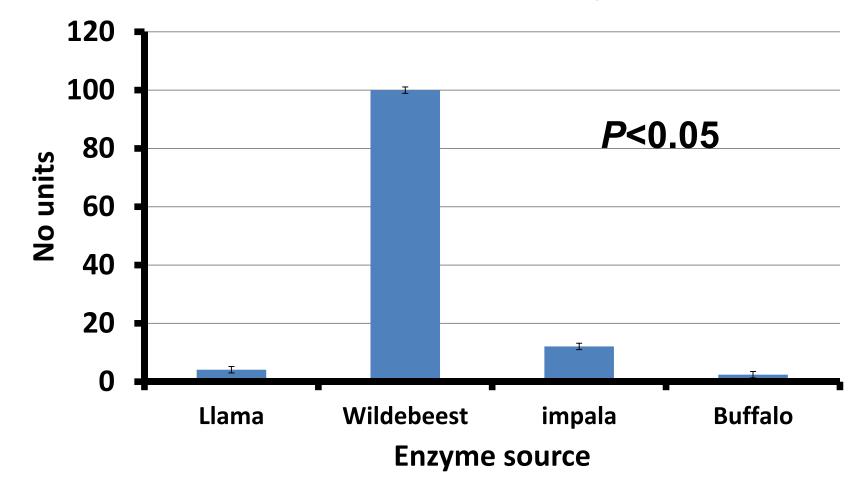
• Enzyme assay

Exocellulase-substrate crystalline cellulose
**Specific activity (µg glucose/mg crude protein)

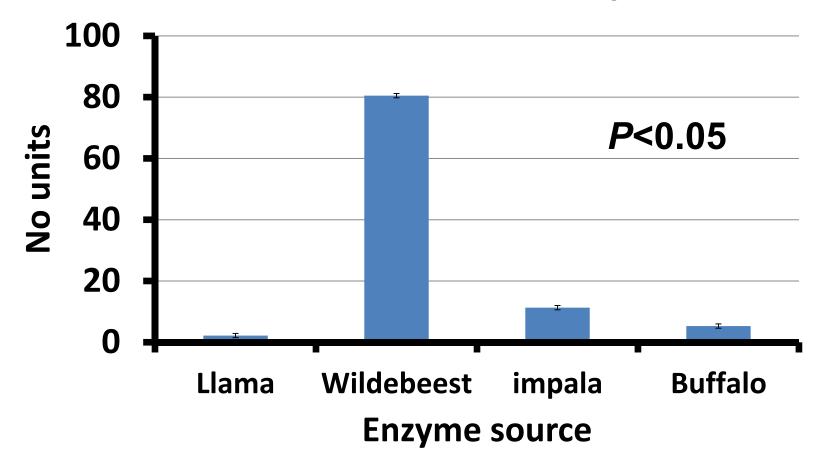

-Endocellulase- substrate carboxymethyl cellulose


-Xylanase-substrate xylan
*Specific activity (µg xylose/mg crude protein)

- Kinetic parameters were determined as described by Eisenthal and Cornish-Bowded (1974) using HYPER software programme (Easterby, 2003)
- Km = affinity of an enzyme to its substrate
- Vmax = rate of products formation/min from a substrate
- Kcat = Enzyme catalytic rate
- Kcat/Km = Catalytic efficiency of enzyme substrate pair


Statistical analysis

•Enzyme activities and kinetic parameters were subjected to analysis of variance (ANOVA) using the general linear model of SAS.


Exocellulase efficiency

Hemicellulase efficiency

Endocellulase efficiency

Findings

- Enzymes were successfully isolated
- •Both cellulase and hemicellulase crude enzyme mixtures were active

•Wildebeest and impala showed the greatest potential in hydrolyzing cellulose, endocellulose and hemicellulase

conclusion

- Wildebeest and impala showed the greatest potential in hydrolyzing cellulose and hemicellulose than llama and buffalo grazing of same field
- Further studies
- Harbour more cellulolytic microbes ?
- Microbes that have evolved?
- Purification of enzymes may answer these questions
- Application as feed supplements !!!
- Synergism among microbial ecosystems

