

Sequence-based genomic prediction for a complex trait in *Drosophila melanogaster* reveals sex-differentiated epistasis

Henner Simianer¹, Ulrike Ober¹, Wen Huang² & Trudy Mackay²

- ¹ Animal Breeding and Genetics Group, Department of Animal Sciences, Georg-August-University Göttingen, Germany
- ² Department of Genetics, North Carolina State University, Raleigh, USA

Drosophila melanogaster Genetics Reference Panel (DGRP)

- 176 inbred lines
- for each line ~ 100 males and 100 females phenotyped
- all lines fully sequenced with ~2.5 mio SNPs
- Genomic prediction with GBLUP

	CV accuracy				
	all	only males	only females	F1-	
Starvation resistance	0.24	0.20	0.25	0.59	
Startle response	0.23	0.23	0.22	0.57	
Chill coma recovery	04	14	0.05	0.37	

Why does genomic prediction fail for the heritable trait chill coma recovery while it works for other traits?

Obvious candidate reasons (non-normal distribution, outliers etc.) could be ruled out

training setpredicted

Obtained accuracy with all SNPs:

males: NA (in most cases $\hat{\sigma}_g^2 = 0$) females: 0.059

Poor man's Bayes B

- \Rightarrow 1,868,905 common variants (MAF >= 0.05)
- ⇒ 175 lines in training set
 - \Rightarrow GWAS in the training set
 - \Rightarrow select all SNPs with $p < 10^{-x}$
- ⇒ predict remaining line just with this subset of SNPs
- ⇒ repeat 176 times so that each line is predicted once

How to include additive x additive epistasis

Additive genomic relationship matrix (VanRaden, 2008)

Matrix M: # individuals x # genotypes, coded as -1,(0),1

Matrix P: # individuals x # genotypes, column i is $2 \cdot (p_i - 0.5)$

$$\mathbf{G} = \frac{(\mathbf{M} - \mathbf{P})(\mathbf{M} - \mathbf{P})'}{2 \cdot \sum_{i=1}^{n_{SNPs}} (p_i \cdot (1 - p_i))}$$
$$\mathbf{G}_{AxA} = \mathbf{G} \circ \mathbf{G}$$

Without SNP-selection

Prediction with the epistatic covariance matrix $G_{{\it AxA}}$ based on all SNPs

⇒ Prediction ability: ~0

With SNP-selection

1. Identify significant additive x additive interactions in an epistatic GWAS

With SNP-selection

- 1. Identify significant additive x additive interactions in an epistatic GWAS
- 2. Build the \mathbf{G}^* matrix for just the SNPs included in the pairs
- 3. Construct the epistatic matrix $\mathbf{G}_{AxA}^* = \mathbf{G}^* \circ \mathbf{G}^*$
- ⇒ Prediction ability with this model: ~0

Population Structure and Cryptic Relatedness in Genetic Association Studies

William Astle and David J. Balding¹

$$\mathbf{G}_{AB} = \frac{1}{n_{SNPs}} \sum_{i=1}^{n_{SNPs}} \frac{(\mathbf{m}_{i} - \mathbf{p}_{i})(\mathbf{m}_{i} - \mathbf{p}_{i})}{2 \cdot p_{i} \cdot (1 - p_{i})}$$

VanRaden (2008):
$$\mathbf{G} = \frac{(\mathbf{M} - \mathbf{P})(\mathbf{M} - \mathbf{P})'}{2 \cdot \sum_{i=1}^{n_{SNPs}} (p_i \cdot (1 - p_i))}$$

Extention of the Astle & Balding approach for additive x additive epistasis

Epistatic GWAS \Rightarrow k = 1, ..., n_{EP} significant SNP pairs { k_1, k_2 }

Construct a matrix for each SNP $\mathbf{G}_{ki} = \frac{(\mathbf{m}_{ki} - \mathbf{p}_{ki})(\mathbf{m}_{ki} - \mathbf{p}_{ki})'}{2 \cdot p_{ki} \cdot (1 - p_{ki})}$

Then build
$$\mathbf{G}_{AB_{AxA}} = \frac{1}{n_{EP}} \sum_{k=1}^{n_{EP}} \mathbf{G}_{k1} \circ \mathbf{G}_{k2}$$

With SNP-selection

- 1. Identify significant additive x additive interactions in an epistatic GWAS
- 2. Build the $G_{\textit{AB}_{\textit{AxA}}}$ matrix with all significant pairs

With SNP-selection

- 1. Identify significant additive x additive interactions in an epistatic GWAS
- 2. Build the $G_{\textit{AB}_{\textit{AXA}}}$ matrix with all significant pairs
- \Rightarrow Prediction ability with this model ...

Leave-one-out cross-validation – epistatic SNP selection

- \Rightarrow 672,636 LD-pruned frequent variants (MAF >= 0.15)
- ⇒ 175 lines in training set
 - \Rightarrow do an additive x additive GWAS in the training set (2.2 \times 10¹¹ pairs)
 - \Rightarrow construct the $G_{AB_{4x4}}$ matrix only with those SNP pairs for which $p < 10^{-x}$
 - \Rightarrow predict the remaining line
- \Rightarrow repeat this 176 times

Combined additive + epistatic scan

- ⇒ chose the epistatic set with the highest predictive ability
- ⇒ add an additive scan across the whole scale
- ⇒ predict with a combined model (additive + epistatic)

Summary and conclusions

Chill coma resistance in *Drosophila melanogaster* is a trait for which genomic prediction with GBLUP fails, although genetic variance exists

GWAS-based pre-selection of the most significant SNPs improves massively the prediction ability in an additive model

When properly modeled, epistatic additive x additive interactions also provide a comparable prediction ability

Combining the top additive and additive x additive effects in the same model yields a prediction ability ~0.4, compared to zero with GBLUP

The trait chill coma resistance was found to have a rather different genetic architecture in males and females

Predicting performance of one sex with a model optimized for the other sex essentially failed

What could this result mean for animal breeding?

- Traits expressed in males and females (such as growth-related traits) may have very different genetic architecture (despite having a high genetic correlation, r_{MF} for chill coma resistance was 0.87)
- Genomic prediction relies on SNPs that capture the underlying genetic architecture of a trait (especially so for methods with feature selection such as Bayes B)
- A model trained with male performance data may thus fail to accurately predict female performances (and vice versa)
- Empirical validation of this hypothesis needed

Thank you

Ulrike

Trudy

This research was funded by the German Federal Ministry of Education and Research within the AgroClustEr "Synbreed – Synergistic plant and animal breeding" (Funding ID: 0315528C) in association with the DFG research training group "Scaling problems in statistics" (RTG 1644).

Predicted vs. observed phenotypes with the optimal model in the leave-one-out crossvalidation

20

The proof of the pudding ...

External validation by predicting an additional set of 27 lines sequenced and phenotyped (~50 replicates per line and sex) in 7/2013

ANOVA with individual measurements (176 lines \times 200 individuals \approx 35'000 measurements)

$$\label{eq:phenotype} \begin{split} \text{phenotype} &= \mu + \text{sex} + \text{line} + \text{line} * \text{sex} + \text{replicate}(\text{sex} * \text{line}) + \text{residual} \quad (\text{Model 1}) \\ & line \sim N(0, \sigma_l^2 I) \end{split}$$

phenotype = μ + sex + line + line * sex + replicate(sex * line) + g + residual (Model 2) $g \sim N(0, \sigma_g^2 G)$

$$\label{eq:phenotype} \begin{split} \text{phenotype} &= \mu + \text{sex} + \text{line} + \text{line} * \text{sex} + \text{replicate}(\text{sex}*\text{line}) + g + (g \times g) + \text{residual} \quad (\text{Model 3}) \\ g \times g \sim N(0, \sigma_{g \times g}^2 G \circ G) \end{split}$$

Variance components obtained with ASREML

Starvation resistance		σ_l^2	σ_g^2	$\sigma_{g imes g}^2$	σ_e^2
	Model 1	88.0	-	-	
	Model 2	0	43.1	-	88.0
	Model 3	0	43.1	0	
Startle response		σ_l^2	σ_g^2	$\sigma_{g imes g}^2$	σ_e^2
	Model 1	33.5	-	-	
	Model 2	0	16.5	-	25.7
	Model 3	0	13.0	1.7	
Chill coma recovery		σ_l^2	σ_g^2	$\sigma_{g imes g}^2$	σ_e^2
	Model 1	23.4	-	-	
	Model 2	19.8	1.8	-	50.2
	Model 3	0	0	5.9	

Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor

Gustavo de los Campos¹*, Ana I. Vazquez¹, Rohan Fernando², Yann C. Klimentidis³, Daniel Sorensen⁴

Genomic prediction in (largely) unrelated samples gains from constructing the G matrix only from the most significant SNPs in a GWAS

Are the DGRP lines largely unrelated?

Heatmap of G

