Early detection of metabolic disorders in dairy cows by using sensor data

25 August 2014, EAAP, Copenhagen, Denmark

<u>Rudi de Mol</u>, **Judith van Dijk**, Marius-Hans Troost, Attje-Rieke Sterk, Ruurd Jorritsma & Pieter Hogewerf

This presentation

Backgrounds

- Smart Dairy Farming project
- Transition period / metabolic disorders
- Material and methods
 - Literature study
 - Data collection
 - Model formulation
- Results and discussion
- Conclusions

Smart Dairy Farming project

Mission:

To help dairy farmers with information and technology to improve health and longevity of the cows

- Goal:
 - Iongevity: +2 lactations
 - production: +20,000 kg milk
- Development and testing at eight practical dairy farms

www.smartdairyfarming.nl (only in Dutch)

Smart Dairy Farming: organisation

Research topics:

- Animal health
- Fertility
- Feeding
- Work packages:
 - Chain transparency
 - Model development
 - Sensors
 - Learning networks

Smart Dairy Farming: partners

Transition period / metabolic disorders

- start of dry-off period 60th day in lactation
- energy intake lower than energy requirement: negative energy balance
- increased risk for disorders:
 - milk fever
 - ketosis
 - left displaced abomasum
- monitoring necessity: detection model for early warning based on sensor measurements

Material & methods: literature study

	milk fever	ketosis	left displaced abomasum
milk yield	?	++	++
feed intake	++	++	++
rumination	++	+	?
body weight	-	++	++
activity	+	+	-

- ++ good indicator
- + indicator
- ? varying results found
- not useful as indicator

Material & methods: data collection

- commercial farm: 300 cows, 4 milking robots (AMS)
- sensor data: 15 months
- reference data: 26 metabolic disorders (mostly milk fever)

variable		measurement method	
	milk yield	AMS	
	milk fat & protein	AMS	
	milking visits	AMS	
	concentrates intake	AMS/concentrates feeder	
	concentrates leftover	AMS/concentrates feeder	
	feedings	AMS/concentrates feeder	
	feeding visits	AMS/concentrates feeder	
	activity	collar sensor	
	rumination activity	collar sensor	
VESTOCK	body weigth	AMS/concentrates feeder	

Material & methods: model formulation

level alert:

- daily value differs from expected value (based on moving average + standard deviation)
- one day / two successive days
- ketosis alert based on fat & protein percentage
- trend alert:
 - decrease in milk yield in first four weeks of lactation
 - strong decrease in body weight in first 80 days
- index alert:
 - activity/rumination deviating on day of calving
 - body weight deviating at start/end of dry period

Material & methods: model formulation

- SumAlert: number of alerts per day per cow
- SmartSumAlert: number of selected alerts per day per cow

	disease	no disease
alert	True Positive (TP)	False Positive (FP)
no alert	False Negative (FN)	True Negative (TN)

- sensitivity = percentage of detected cases TP/(TP + FN)
- specificity = percentage of healthy cows without alert TN/(TN + FP)

Results: one day level alerts

ROC curve, e.g.: for activity a: sensitivity 86% specificity 97%

Results: ... + two days level alerts

Results: ... + trend alerts

ROC curve, e.g.: for weight one day w1: sensitivity 56% specificity 95.9%

Results: ... + index alerts

ROC curve, e.g.: for activity at calving day ac: sensitivity 75% specificity 92%

Results: sum alerts

- different sums: 1, 2, 3, 4, 5
- different periods: 0 days, 2 days, 4 days and 10 days

Discussion

- Difference in performance of variables
- Double alert not applicable
- Milk yield difficult for milk fever
- Performance of variables differs sometimes from literature
- Combination of variables needed to increase specificity
- Higher sensitivity = lower specificity (and vice versa)

Conclusions

- Detection of metabolic disorders based on sensor data possible
- But high sensitivity difficult if specificity at least 99%
- Combination of (selected) variables worthwhile!
- Detection up to 4 days prior to diagnosis
- Real-time model started recently

