

EAAP 2014 Copenhagen, Denmark 25 - 29 August 2014

65th annual meeting of the European Federation of Animal Science

A MULTIVARIATE APPROACH TO IDENTIFY VARIABLES AFFECTING THE CARBON FOOTPRINT OF DAIRY CATTLE FARMS

Serra¹, M.G., Atzori¹, A.S., Cellesi¹, M., Zanirato², G., and Cannas¹, A.

¹Università di Sassari - Dipartimento di Agraria, Sassari, Sardinia, Italy ²Filiera AQ srl, Bologna, Italy **Carbon footprint (CF) estimations for the dairy cattle sector**

from 0.92 (Kristensen et al., 2011) to 13.78 (Bartl et al., 2011) kg of CO_2eq/kg of milk

CF = affected by many variables (ISO, 2006)

> milk production level is the most important

Iarge variations in CF within the same milk production level have been reported

Introduction

- Climate can affect the CF level by modifying several variables within dairy cattle farms:
 - more fibrous forages
 - high N volatilization from manure and soil
 - animal production performances
 - energy consumption
- Mediterranean area = specific climatic conditions:
 - hot, dry and often windy summers
 - alternation of drought and rainy periods
- Little information on the CF of dairy cattle sector of the <u>Mediterranean area</u> is available

- Boundaries of the system: from cradle to farm gate
- IPCC (2006) Tier 2: N₂O from on-farm feed production, CH₄ from manure
- IPCC (2006) Tier 3: enteric CH₄, N excretion, N volatilization, N₂O from manure, N emissions from N applied to soil, emissions from energy use, secondary emissions

M&M and RESULTS:

Poster in this Congress, section 42: "Partial life cycle assessment of the greenhouse gases emissions in dairy cattle farms of Southern Italy

Objectives

> to test a multivariate approach to identify variables, besides milk production level, which most affect the CF level

> to find a method to select the most important variables affecting CF to be measured in future CF assessments

<u>2 subsets</u> on the basis of milk production level:

- 1° subset (LMP) = 82 farms (< 5000 kg of FPCM/yr per cow)
- 2° subset (HMP) = 200 farms (> 5000 kg of FPCM/yr per cow)

We carried out a Linear Discriminant Analysis (LDA) to see if this type of analysis was able to discriminate farms with higher or lower CF than those predicted by the regression lines

About 200 variables collected with the survey: 87 were selected for the study

- 25 variables on <u>farms</u> and of the <u>herd</u> characteristics
- 12 variables indicating the average monthly temperature
- 32 variables regarding <u>ration characteristics</u>
- 5 variables regarding <u>energy use of the farms</u>
- 13 variables regarding farm <u>crop cultivations</u>

LMP farms

HMP farms

Results

LDA for the HMP farms

- LDA performed on 139 farms with HMP
- Group 0 = farms with CF values higher than those predicted by regression analysis
- Group 1 = farms with CF values lower than those predicted by regression analysis

HMP Farms (n=139),			
LDA with 87 variables			
	0	1	
0	72	2	
1	0	65	

Results

LDA for the LMP farms

- LDA performed on 57 farms with LMP
- Group 0 = farms with CF values higher than those predicted by regression analysis
- Group 1 = farms with CF values lower than those predicted by regression analysis

LMP	LMP Farms (n=57),			
LDA with 87 variables				
	0	1		
0	34	0		
1	0	23		

New selection of variables for the 2nd LDA for the HMP farms

name	Coefficient	name	Coefficient
1- mean Temp, Sept	14.3039	16- corn cultiv	1.9001
2- mean Temp, Jul	13.8864	17- GEin, dry cows	1.5732
3- F:C, dry cows	8.9966	18- F:C, unweaned calves	1.5552
4- mean Temp, Jun	8.9493	19- mean Temp, May	0.8391
5- F:C, bred	ablee with e	a officiente included	0.7526
6- mean Ter So vari	0.7517		
7- mean Ter Wit	$thin \pm SD/10$	were eliminated	0.3857
8- mean Temp, Oct	4.7088	23- farm localization	0.3241
9- mean Temp, Nov	4.6369	24- consump min fert	0.2284
10- mean Temp, Aug	4.2862	25- GEin, lact cows	0.2245
11- mean Temp, Apr	2.7942	26- dry cows	0.1694
12- mean Temp, Feb	2.7895	27- corn silage cultiv	0.0888
13- F:C, lactating cows	2.6975	28- age first calving	0.0883
14- Neff, corn grain	2.6259	29- mean Temp, Jan	0.0681

New selection of variables for the 2nd LDA for the LMP farms

name	coefficient	name	coefficient
1- F:C, open heifers	11.2867	18- mean Temp, Feb	0.5722
2- F:C, bred heifers	11.0767	19- mean Temp, Jul	0.5412
3- F:C, dry cows	5.9421	20- GEin, open heifers	0.5304
4- F:C, lactating cows	5.1571	21- mean Temp, Apr	0.3972
5- corn cultiv	2.8098	22- mean Temp, Jun	0.3701
6- mean Te <u>mp, Sept</u>	2.2270	23- dry cows	0.3521
7- mean Te 54 varia	bles with coe	efficients included	0.2745
8- mean Te within +SD/10 were eliminated		0.2720	
9- housing type	1.0900	20- OII-IaIIII Ieeus	0.2404
10- GEin, dry cows	1.0803	27- mean Temp, Mar	0.1738
11- mean Temp, Oct	1.0601	28- consump min fert	0.1728
12- F:C, unweaned calves	s 1.0016	29- irrigation service	0.0747
13- GEin, bred heifers	0.7362	30- surplus cows	0.0674
14- mean Temp, Nov	0.7312	31- beef calves	0.0532
15- mean Temp, Jan	0.7039	32- mean Temp, Dec	0.0503
16- farming system	0.6791	33- Neff, corn grain	0.0448
17- corn silage cultiv.	0.6674		

➢ Based on these results, we wanted to see if it was possible to further reduce the number of

variables needed to predict the CF

Results

Results of the 2nd LDA for the HMP and LMP farms

	HMP Farms (n=139),			LMP Farms (n=57),			
	LDA with 29 variables		LDA with 33 variables				
		0	1		0	1	
	0	57	15	0	33	4	
	1	15	52	1	1	19	
LDA, HMP farms				LDA, LMP farms			
Number of farms			Number of farms				

Discussion & Conclusions

- CF in LMP farms was more affected by dietary quality and crop cultivation techniques
 - high variability was observed for these variables in LMP farms, which did not present standardized management compared to HMP farms
- CF in HMP farms was more affected by climatic conditions and dietary F:C ratio
 - Iow variability in feed and crop cultivation management was observed for these farms, because of their standardized farm management techniques

LDA was useful to identify the variables with the higher impact on the CF of the farms

- The elimination of the variables realized to perform the 2nd LDA was appropriate for the LMP farms but it was not for the HMP farms
 - the small variability of CF of the HMP farms needs to be investigated considering more factors than those selected by the 1st LDA

Acknowledgments

• Director and Managers of Filiera A.Q. s.r.l.

 Directors, Technicians and Farmers of the 4 Cooperatives of the "Dairy Carbon footprint project"

 Colleagues of the Sections of Agronomy, Agriculture Engineering and Animal Science
of the Department of Agraria of the University of Sassari

Did you hear?? Cow 558 is producing only 0.35 kg of CO₂eq per liter of milk!!!! Of course, it's easy for her! She just had a ruminal plastic surgery !!!!

Thank you for your attention