

Animal Breeding Institute of Agricultural and Nutritional Sciences Martin Luther University Halle-Wittenberg

Using on-farm milk progesterone levels to define new fertility traits for dairy cows

Sorg D, Wensch-Dorendorf M, Schöpke K, Martin G, Swalve HH

diana.sorg@landw.uni-halle.de

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Background

- Iow heritability of conventional fertility traits
- declining cow fertility
- progesterone-based new fertility traits are promising...

Background

- Iow heritability of conventional fertility traits
- declining cow fertility
- progesterone-based new fertility traits are promising...

...BUT:

- Biological fertility of the cow not easy to measure automatically
- No common standard on definition of progesterone-based fertility traits (e.g. sampling frequency, progesterone threshold for luteal activity, method of measurement ...)

Objective

 Analyzing progesterone-based fertility traits for dairy cows that could be included in a breeding program in the future

 \rightarrow Which progesterone-based traits can be easily measured on-farm?

- \rightarrow Which traits are suitable for genetic selection?
- \rightarrow What influence do method and sampling frequency have?

Progesterone-based traits

Commencement of Luteal Activity

= first rise above threshold

CLA

= proportion of samples above threshold

Progesterone-based traits

Commencement of Luteal Activity

= first rise above threshold

Proportion of Luteal Activity

= proportion of samples above threshold

- Week 2 9 pp.
- on-farm ELISA measurement (eProCheck from FrimTec, Oberostendorf, Germany) in skimmed milk
- 5 large commercial dairy herds in Eastern Germany forming 2 data sets:

	data set 1	data set 2
Number of profiles	1,446	296
Herd #	1,2,3,4	5
Parity	1-3	1-12
305-d milk yield	10,300 kg	11,900 kg
Progesterone measurements	1 per week	2 per week

- Mixed model with SAS proc mixed and cow as random effect (accounting for repeated records) to examine fixed effects
- Genetic analysis with VCE and full relationships

Single trait animal model – genetic analysis

$y_{ijk} = \mu + HYS_i + P_j + a_{ijk} + e_{ijk}$

 y_{ijk} = trait (CLA1, CLA2, CLA3, CLAOpt, PLA2, PLA3, PLAOpt, prog_mean) μ = intercept

HYS_i = fixed effect of herd-year-season of calving

 P_i = fixed effect of parity (j = 1 for lactation 1, j = 2 for lactation 2 and above)

a_{iik} = animal's random additive genetic effect

e_{iik} = random residual effect

Two trait animal model – genetic analysis

$$y1_{ijk} y2_{ijk} = \mu + HYS_i + P_j + a_{ijk} + e_{ijk}$$

y_{ijk} = trait (CLA2, CLA3, CLAOpt, PLA2, PLA3, PLAOpt, prog_mean) μ = intercept

HYS_i = fixed effect of herd-year-season of calving

 P_i = fixed effect of parity (j = 1 for lactation 1, j = 2 for lactation 2 and above)

- a_{iik} = animal's random additive genetic effect
- e_{iik} = random residual effect

LSMeans

p<0.0001 p<0.0001

LSMeans

Single trait model

Trait	h²	SE
CLA1	0.04	0.05
CLA2	0.07	0.06
CLA3	0.08	0.06
CLAOpt	0.07	0.04

Single trait model

Trait	h ²	SE	Trait	h²	SE
CLA1	0.04	0.05			
CLA2	0.07	0.06	PLA2	0.18	0.06
CLA3	0.08	0.06	PLA3	0.18	0.07
CLAOpt	0.07	0.04	PLAOpt	0.13	0.06

Single trait model

Trait	h ²	SE	Trait	h ²	SE	Trait	h²	SE
CLA1	0.04	0.05				Prog_ mean	0.25	0.07
CLA2	0.07	0.06	PLA2	0.18	0.06			
CLA3	0.08	0.06	PLA3	0.18	0.07			
CLAOpt	0.07	0.04	PLAOpt	0.13	0.06			

Two trait model

Trait 1	Trait 2	h ₁ ²	h ₂ ²	r _g	r _p
CLA2	PLA2	0.09	0.19	-1.0	-0.47
CLA3	PLA3	0.06	0.18	-1.0	-0.67
CLAOpt	PLAOpt	0.06	0.13	-1.0	-0.64
PLA2	Prog_mean	0.20	0.25	0.95	0.55

 Progesterone-based fertility traits can be measured on-farm and once weekly in a commercial setting, but method of detection and sampling frequency have a significant influence on phenotypic levels of CLA and PLA

> → Exact and standardized definition of progesteronebased new fertility traits necessary

1. Exact definition of progesterone-based new fertility traits necessary!

- **2.** High genetic correlation of PLA with CLA
 - PLA easy to detect with a computer algorithm
 - Higher heritability than CLA
 - \rightarrow using PLA as a proxy for CLA?

- 1. Exact definition of progesterone-based new fertility traits necessary!
- 2. Using PLA as a proxy for CLA?

- 3. Prog_mean had the highest heritability and can be easily calculated
 - \rightarrow new interesting trait
 - → Further studies needed on physiological implications of prog_mean

- 1. Exact definition of progesterone-based new fertility traits necessary!
- 2. Using PLA as a proxy for CLA?
- 3. Prog_mean new interesting trait

diana.sorg@landw.uni-halle.de

We thank our sponsors for the support:

Federal Ministry of Food and Agriculture

Federal Office for Agriculture and Food

Landesanstalt für Landwirtschaft, Forsten und Gartenbau