

Agriculture et Agroalimentaire Canada

EAAP annual meeting 2014, Copenhagen, Denmark

Water-soluble vitamins and reproduction in sows: beyond prolificity

J. Jacques Matte, agr., Ph. D.

Dairy and Swine R & D Centre, Sherbrooke (STN Lennoxville), QC Centre de R & D sur le bovin laitier et le porc, Sherbrooke (STN Lennoxville), QC

Canada

Hyperprolificacy

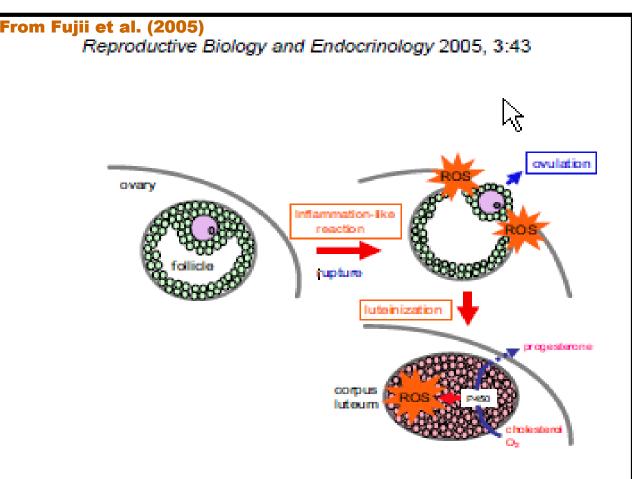
- Depressed average birth weight and litter weight homogeneity:
 - . consequences for ulterior growth performance
- > Nutritional factors involved (micronutrients):
 - . quality of ovulation
 - . adequacy of micro-nutrients transfer from sows to embryos and fœtuses (B_9 , B_{12} and immunology of reproduction) (Matte et al., 2006, CJAS 86:197-205)

. adequacy of micro-nutrients transfer from sows to piglets

Hyperprolificacy

- Depressed average birth weight and litter weight homogeneity:
 - . consequences for ulterior growth performance

- > Nutritional factors involved (micro-nutrients):
 - quality of ovulation (vitamin B6 X selenium)
 adequacy of micro-nutrients transfer from sows to
 - piglets


Ovulation, embryo survival and prolificacy

	Parity = 1	Parity = 1	Parity > 1	Parity > 1
	1980	"Hyper"	1980	"Hyper"
Ovulation rate	15	20	18	24
Fetal survival	80	70 ¹	72 ¹	67 ¹
(%)		(40) ²	(33) ²	(44) ²
Litter size (d 25)	12	14	13	16

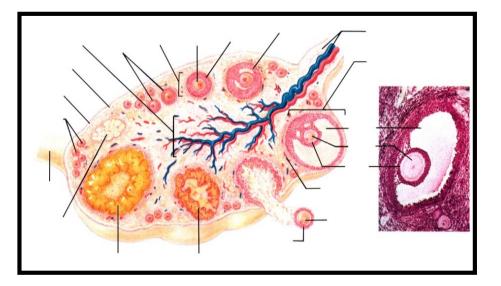
¹ overall

² supplementary embryos

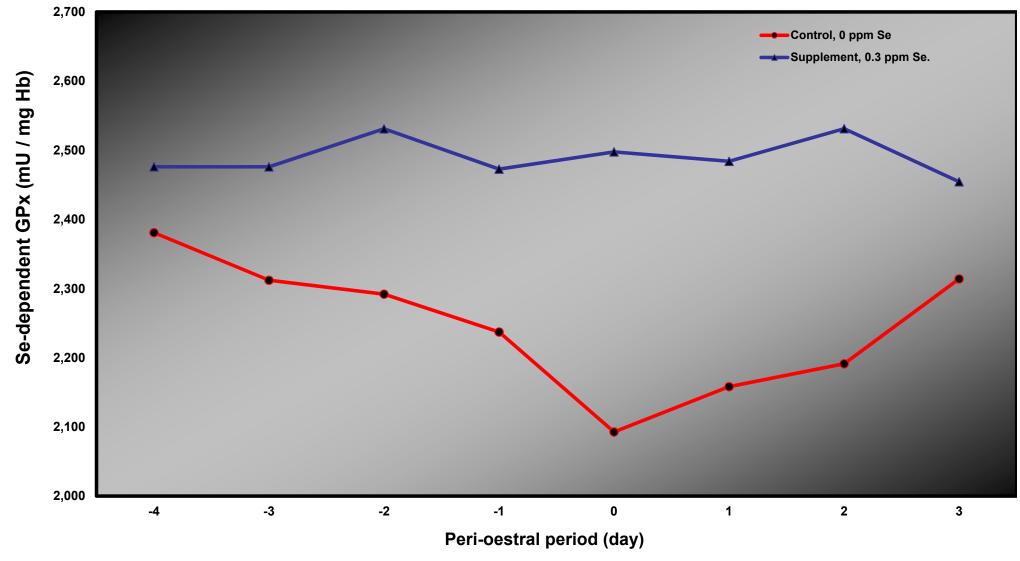
Oxidative stress and ovulation

Figure 2

Generation of ROS during ovulation and sterodogenesis in corpus luteum. Ovulation appears to be an inflammation-like process. ROS is locally produced during follicular rupture and may be involved in the ovulation process. ROS is also generated by the corpus luteum via the monooxygenase reaction as a byproduct during steroid hormone synthesis. ROS must be timely neutralized with antioxydants to avoid

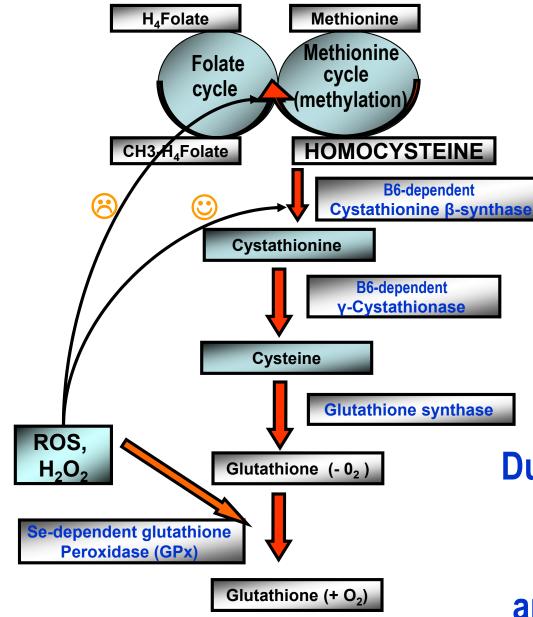

- damage (and apoptose) of oocytes,

- congenital defects of embryo
- and/or CL regression


Antioxidant and pig reproduction

Periods of maximal luteal and follicular activities are associated with increased concentrations of ascorbate within the tissue

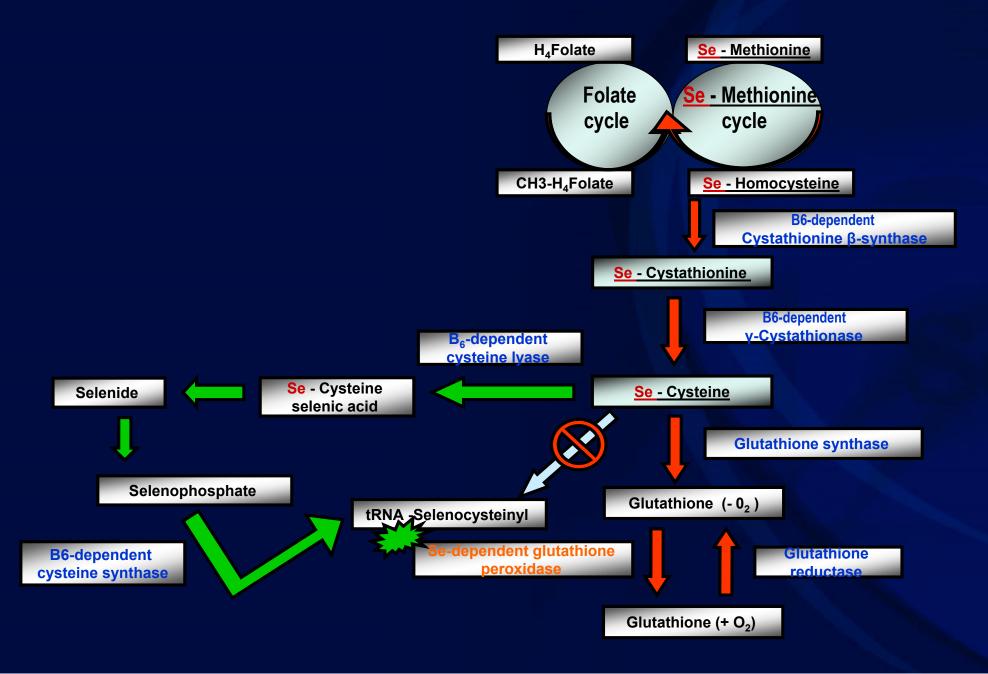
Considerable accumulation of vitamin C in the functional corpora lutea (100 X higher than in circulation)



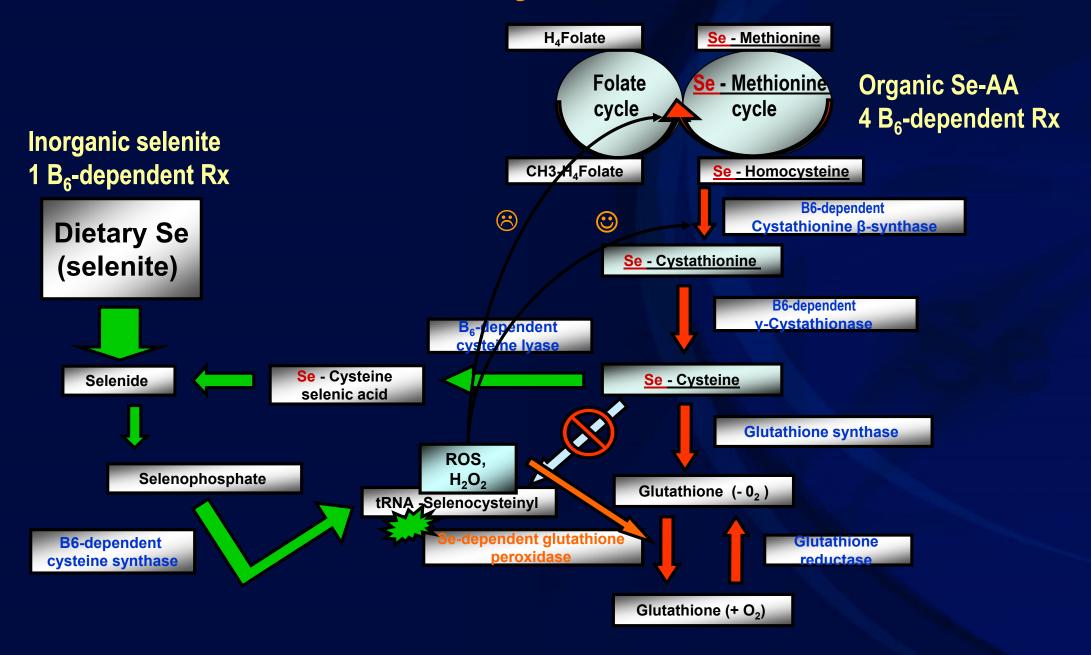
Antioxidation, Se-dependent glutathione peroxidase (GPx) and ovulation

Adapted from Fortier et al. (2012)

S-methionine, S-cysteine and antioxidation


During an oxidative stress, pyridoxine is crucial for transsulfuration and glutathione synthesis

Antioxidation: glutathione and GPx vs vitamin B₆

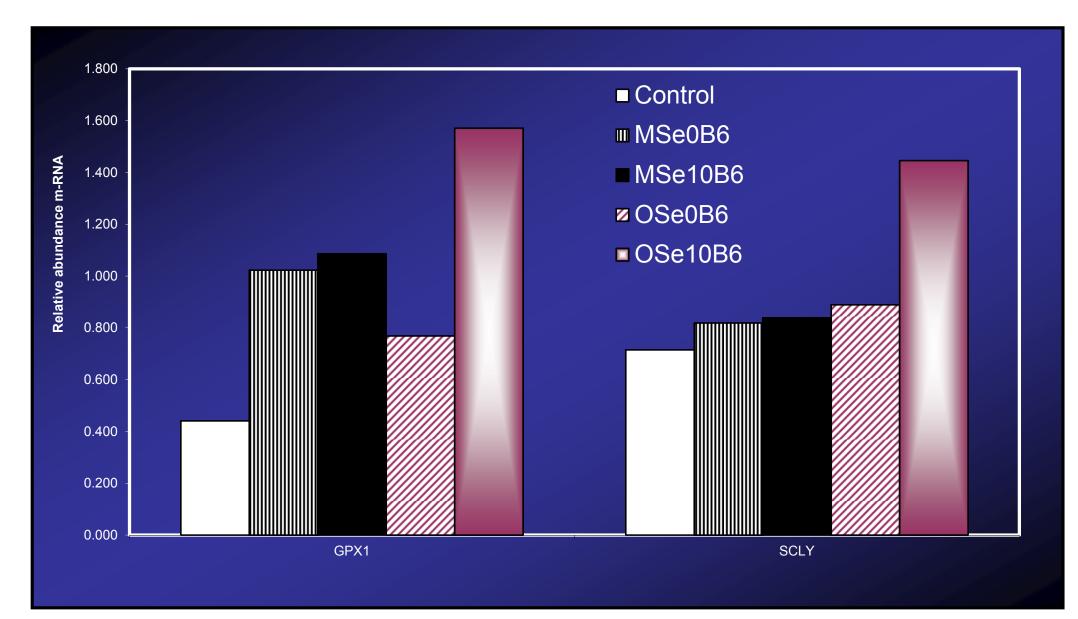

Glutathione : synthesis is dependent of an adequate provision and availability of vitamin B₆ (pyridoxine)

Se-GPx: metabolic route for activation of the enzyme is dependent of selenium but it differs according to the dietary source of selenium, inorganic vs organic (interaction with B₆)

Se-methionine, Se-cysteine and antioxidation

Se-methionine, Se-cysteine and antioxidation

Objective


In gilts from puberty to the 4th post-pubertal oestrus

dietary inorganic (selenite) or organic (Se-yeast) Se (0.3 mg/kg) with or without vitamin B6 (10 vs 0 mg/kg)

> on d 3 of the 4th post-pubertal oestrus (response to oxidative stress induced by oestrus)

- gene expression of Se-cysteine lyase (SCLY) (liver)
- gene expression of Se-GSH-Px (GPX1) (liver) tissues
- ovulation

Gene expression in liver

Adapted from Roy et al. (2011)

Luteinizing hormone (LH) peak and corpora lutea (CL) (d 3 of 4th oestrus)

		Ovulation
Treatment	LH peak (ng/mL)	(# of CL)
Control	206.7	17.4
MSe0B ₆	201.6	16.7
MSe10B ₆	191.2	17.7
OSe0B ₆	194.8	16.9
OSe10B ₆	212.6	21.2

Average of 9 sows per treatment, adapted from Roy et al. (2011)

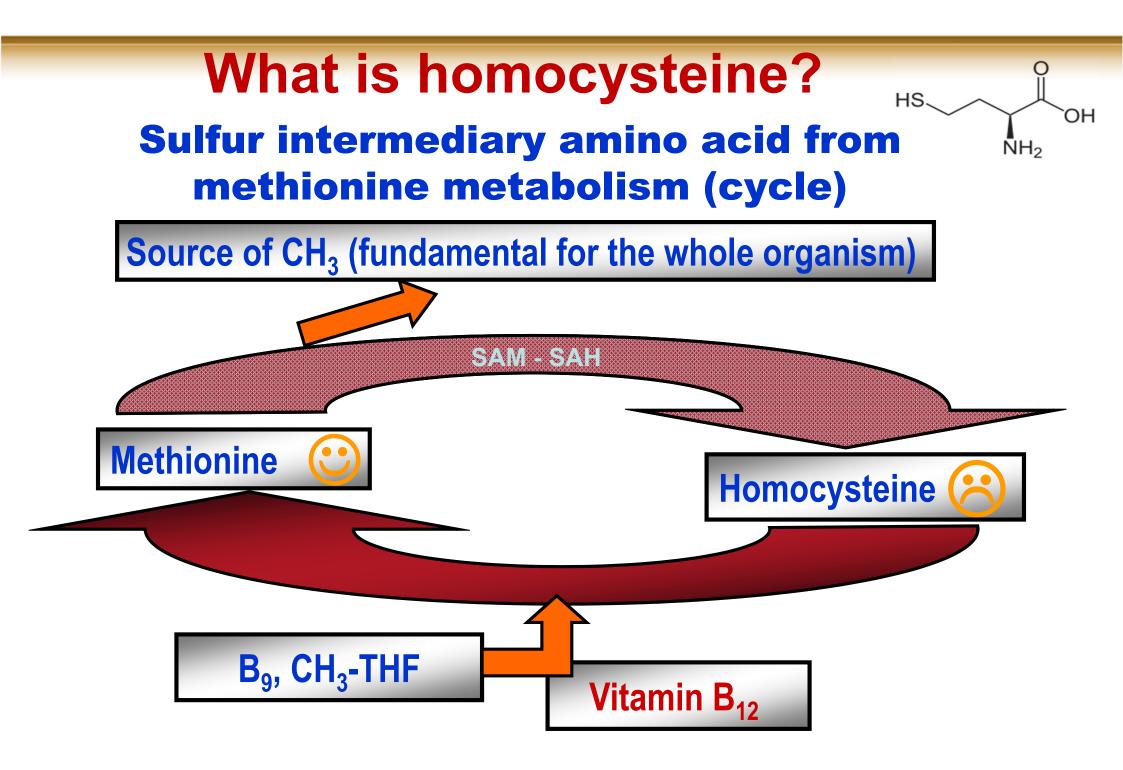
Vitamin B₆ is critical for an adequate flow of selenomethionine and selenocysteine (organic selenium) towards the Se-GPx system. It could potentially enable metabolic and performance responses to dietary supplement of organic selenium

Hyperprolificacy

Depressed average birth weight and litter weight homogeneity:

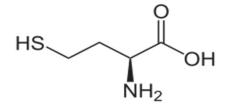
. consequences for ulterior growth performance

> Nutritional factors involved (micronutrients):


. quality of ovulation

. adequacy of micro-nutrients transfer from sows to embryos and fœtuses (Matte et al., 2006, CJAS 86:197-205)

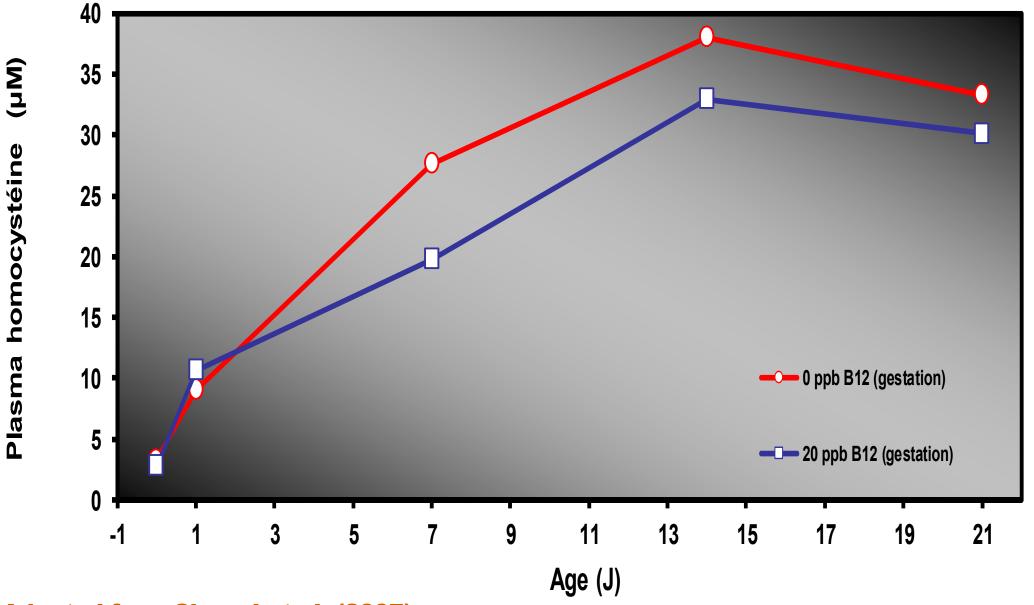
. adequacy of micro-nutrients transfer from sows to piglets (1. case report related to B_{12} transfer vs neonatal metabolic indicator Hcy + 2. in general)


Hyperprolificacy

- Depressed average birth weight and litter weight homogeneity:
 - . consequences for ulterior growth performance
- > Nutritional factors involved (micronutrients):
 - . quality of ovulation
 - . adequacy of micro-nutrients transfer from sows to embryos and fœtuses (Matte et al., 2006, CJAS 86:197-205)
 - . adequacy of micro-nutrients transfer from sows to piglets (1. case report related to B_{12} transfer vs neonatal metabolic indicator Hcy + 2. in general)

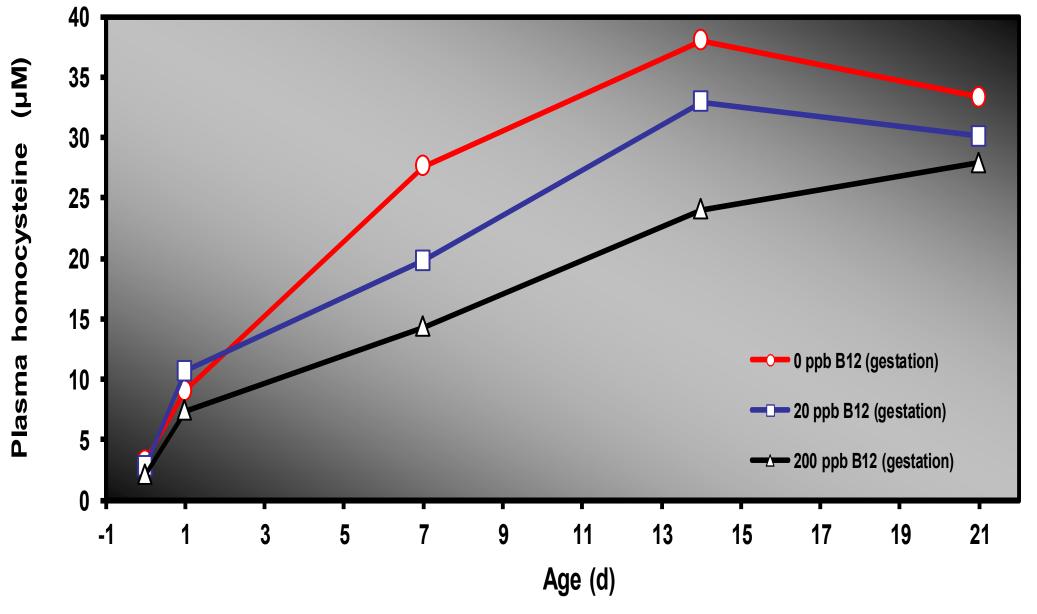
Why studying homocysteine in pigs?

Sulfur amino acid from methionine metabolism

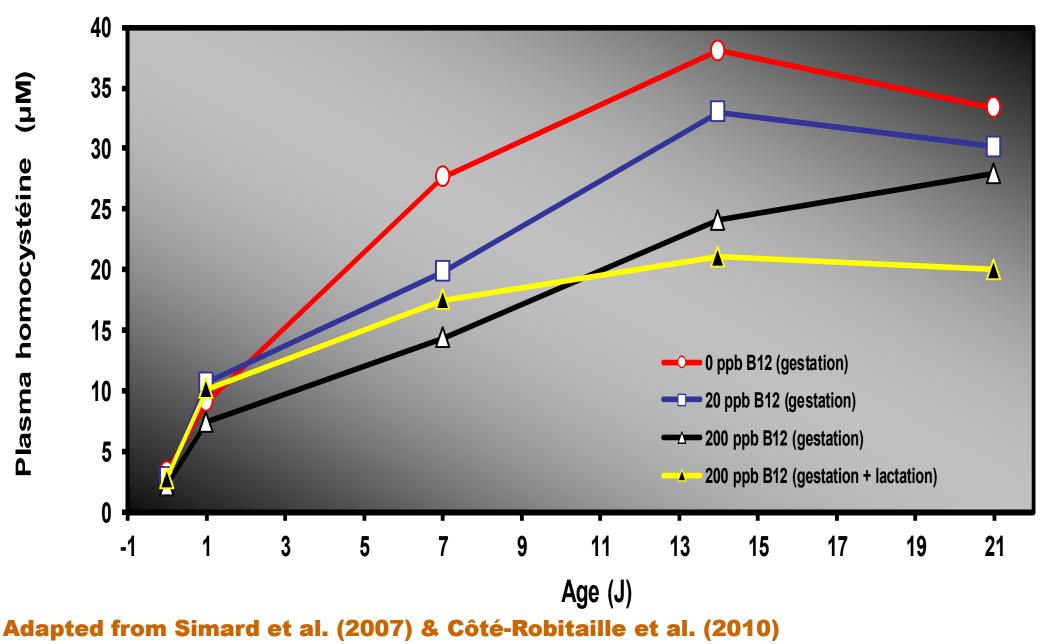


- High levels in circulation are associated to several pathologies such as cardiovascular diseases, neurodegenerative diseases and osteoporosis
- Detrimental effects on embryo development, cell proliferation and immune response

Why studying homocysteine in pigs?


Species	Plasma concentration (µM)		
Mouse	2-3		
Cow	2-7		
Rat	6-8		
Cat	3-4		
Human (normal)	5-10		
Human (high)	> 12		
Poultry (laying hen)	< 14		
Pig	15-25		

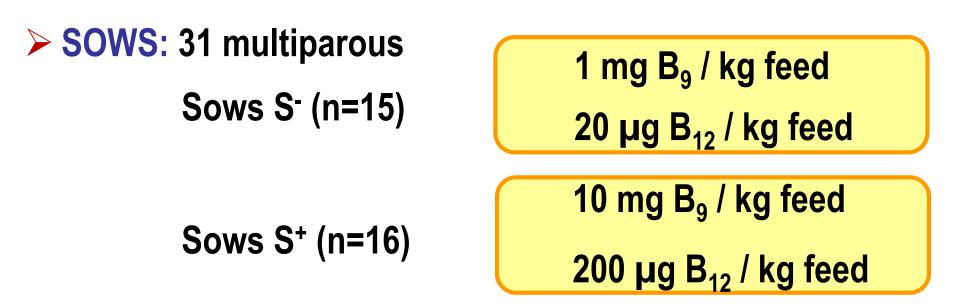
Why studying homocysteine in piglets?


Adapted from Simard et al. (2007)

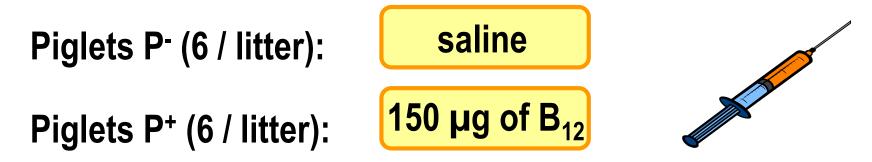
Why studying homocysteine in piglets?

Adapted from Simard et al. (2007)

Why studying homocysteine in piglets?

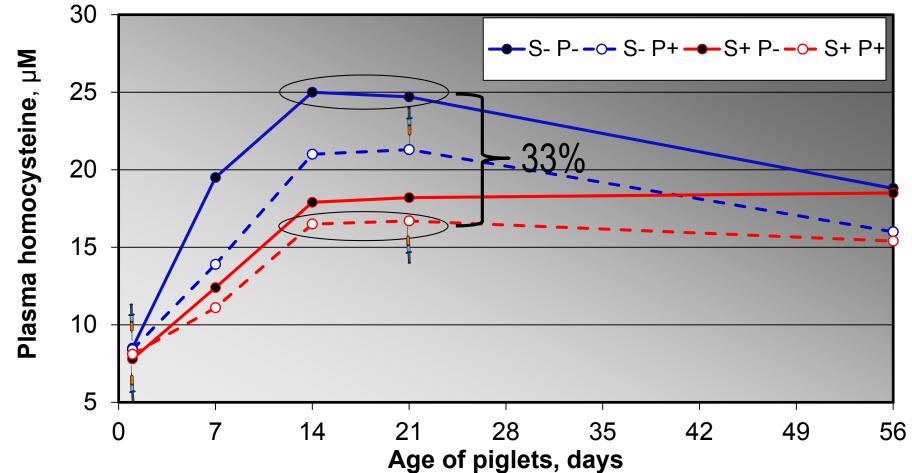

Studied questions

High levels of homocysteine detrimental for piglets?


Substantial decrease beneficial for ulterior growth and immune competence during and after weaning?

Approach using vitamins B_9 and B_{12} supplements as tools to modulate homocysteine.

Treatments

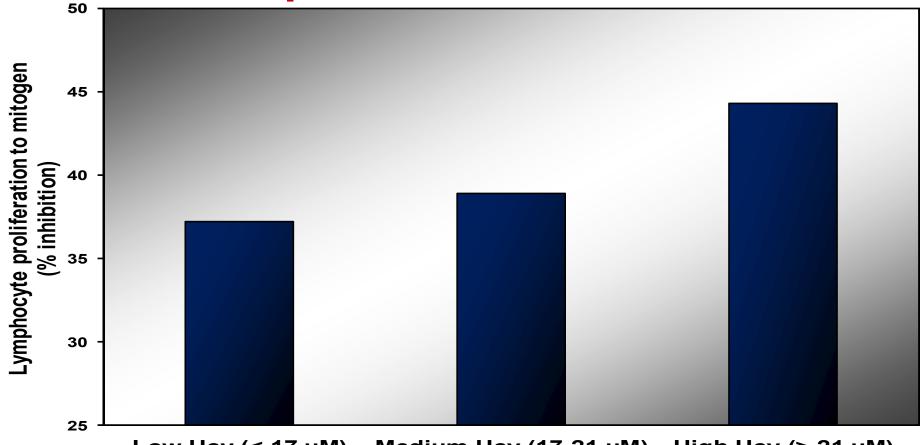


> **PIGLETS:** 12 per litter and injections on <u>d1 and d21</u>

Audet et al., (2014), presented at JAM-ASAS annual meeting, Kansas City, MO, USA.

Plasma Hcy concentrations in piglets vs sow (S) and piglet (P) treatments

The strategy of vitamin supplementation was successful in inducing large variations of Hcy among piglets


Results

High homocysteinemia was not harmful for growth performance.

TREATMENTS:	S- P-	S- P+	S+ P-	S+ P+
ADG (lactation) g / day	276	271	270	283
ADG (post-weaning) g / day	412	392	378	404
ADFI (post-weaning) g / day / piglet	626	603	618	609
Feed efficiency ADG / ADFI	0.659	0.649	0.611	0.663

In contrast, plasma values were <u>positively correlated</u> with some aspects of growth performance of piglets.

Inhibition of lymphocytes proliferation in response to Concavalin A

Low Hcy (< 17 μ M) Medium Hcy (17-21 μ M) High Hcy (> 21 μ M)

Detrimental effects of high homocysteinemia on indicators of cell mediated immunity

Conclusion

Although performance was not affected by vitamin treatments, it appears that the young "high performing" animals with high plasma homocysteine were immunologically more fragile.

Hyperprolificacy

Depressed average birth weight and litter weight homogeneity:

. consequences for ulterior growth performance

> Nutritional factors involved (micronutrients):

. quality of ovulation

. adequacy of micro-nutrients transfer from sows to embryos and fœtuses (Matte et al., 2006, CJAS 86:197-205)

. adequacy of micro-nutrients transfer from sows to piglets (2 aspects, case report related to B_{12} transfer vs neonatal Hcy + in general)

Why the transfer of micronutrients from sow to piglets?

>We rely a lot on "mother nature". In fact, the period of nutritional dependence of piglets to their mother (*in utero* + colostrum + milk), at \pm 135 days, is equivalent to the whole post-weaning period (starter + grower + finisher).

Solution States States

Maternal transfer of micronutrients, "in utero" and /or colostral

Not easy to estimate, few pertinent information available (approximately 20 molecules-elements)

Which type of transfer is more important? For which micronutrient? Maternal transfer of micronutrients, "in utero" and /or colostral

A simple approach is needed to assess if there is a problem and to "screen" micronutrient(s)?

Systemic (blood) vitamers in sows and piglets during the neonatal period (± 1 week)

Estimations of efficiency of "in utero" and colostral transfers of vitamins and minerals from dams to newborn piglets¹

Vitamin	Ratio pre- colostral (piglets) : pre-farrowing (dam)	Relative importance of "in utero" transfer	Ratio post- colostral : pre- colostral (piglets)	Relative importance of colostral transfer
Retinol	0.26		2.7	+ +
Vitamin E	0.44		4.7	+ + + +
Vitamin D	0.11		1.8	+
Vitamin C	2.9	+ + +	4.1	+ + + +
Folates	0.54	_	3.1	+ + +
Vitamin B ₁₂	4.4	++++	2.0	+ +

¹ Plasma concentrations: ratio

The importance of *in utero* vs postnatal transfer of some vitamins and minerals in pig.

Objective: For micronutrients where information is not available, generate data set on the efficiency of transfer from dams to piglets

samples collection on 20 litters

Estimations of efficiency of "in utero" and colostral transfers of vitamins and minerals from dams to newborn piglets

	Ratio pre-colostral	Relative					
Micro-	(piglets) :	importance of "in	Ratio post-colostral :	Relative importance			
nutrient	pre-farrowing (dam)	utero" transfer	pre-colostral (piglets)	of colostral transfer			
Vitamins							
Retinol	0.26		2.7	++			
Vitamin E	0.44		4.7	+ + + +			
Vitamin D	0.11		1.8	+			
Vitamin C	2.9	+ + +	4.1	+ + + +			
Folates	0.54	_	3.1	+++			
Vitamin B ₁₂	4.4	+ + + + +	2.0	+ +			
Niacin ¹	1.0	=	4.0	+++			
Pyridoxine ¹	5.1	++++	0.34				
Riboflavin ¹	0.68	_	3.0	+++			
Biotin ¹	7.9	*******	0.23				
Minerals							
Iron ¹	0.62	_	1.3	+			
Zinc ¹	1.3	+	1.2	+			
Copper ¹	0.30		1.6	+			
Selenium ¹	0.36		1.4	+			

¹ Values in red font, Swine Innovation Porc (Canadian Swine Cluster) 2009-13

Estimations of efficiency of "in utero" and colostral transfers of vitamins and minerals from dams to newborn piglets

Micro- Nutrient	Ratio pre-colostral (piglets) : pre-farrowing (dam)	Relative importance of "in utero" transfer	Ratio post-colostral : pre-colostral (piglets)	Relative importance of colostral transfer	Relative net balance ("in utero" + colostral) vs dams		
Vitamins							
Retinol	0.26		2.7	+ +			
Vitamin E	0.44		4.7	+ + + +	++		
Vitamin D	0.11		1.8	+			
Vitamin C	2.9	+++	4.1	+ + + +	+++++		
Folates	0.54	_	3.1	+ + +	++		
Vitamin B ₁₂	4.4	++++	2.0	+ +	* * * * * * *		
Niacin ¹	1.0	=	4.0	++++	++++		
Pyridoxine ¹	5.1	++++	0.34		++		
Riboflavin ¹	0.68	-	3.0	+++	++		
Biotin ¹	7.9	+++++++	0.23		++++		
Minerals							
lron ¹	0.62	_	1.3	+	=		
Zinc ¹	1.3	+	1.6	+	++		
Copper ¹	0.30		1.6	+			
Selenium ¹	0.36		1.4	+			

¹ Values in red font, Swine Innovation Porc (Canadian Swine Cluster 2009-13

Why copper and vitamins A and D?

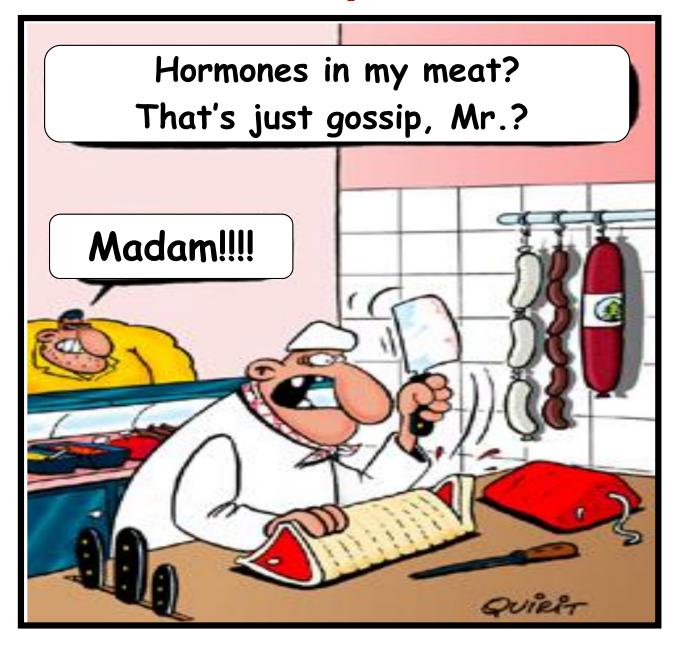
- In nature, this transfer was possibly not critical for evolution of the species because of abundance in the environment of newborn piglets of:
 - UV light (vitamin D)
 - plants rich in β-carotene
 - soil as source de trace minerals (idem Fe)

Implications: eventual strategies to maximise micronutrient transfer from sow to piglets

- Apparent inadequacies for some micronutrients, amplified in a context of hyperprolificity?
- Should we think about targeted exogenous supplements of some micronutrients to piglets (not a new concept, ex. Fe)?

Further considerations – perspectives

- Assessement of reproductive performance: prolificacy, yes, but also other aspects such as survival and disease resistance in piglets
- Vitamins (water- and fat-solubles) are serious candidates for improvement of survival and disease resistance in piglets: besides growth performance, various roles in immunology and antioxidative capacity



Vitamins, the social aspect of feed additives

Agriculture et Agroalimentaire Canada

This invitation was supported by EAAP and ASAS

Thank you !

For more information:

– Contact J. Jacques Matte: Jacques.Matte@agr.gc.ca

