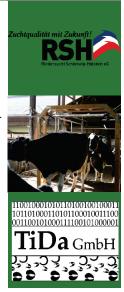
Institute of Animal Breeding & Husbandry Kiel University

C A U Kiel University Faculty of Agricultural and N

Faculty of Agricultural and Nutritional Science


Institute of Animal Breeding and Husbandry

Development of a multi-Kinect-system for gait analysis in dairy cows

J. Salau, J.H. Haas, W. Junge, M. Leisen, G. Thaller

Institute of Animal Breeding & Husbandry, CAU TiDa Tier und Daten GmbH

25th of August 2014

Outline

- A Introduction & motivation
 - Successful camera based studies
 - Necessity for a holistic solution
- B Materials & methods
 - Microsoft Kinect 3D camera
 - Recording unit: preliminary prototype
 - Data collection
- C Alpha versions of software and results
 - Synchronization
 - Claw determination
- D Outlook
 - Gait analyses via trajectories
 - Body condition determination via body characteristics

Introduction & motivation

Successful camera-based studies

- on lameness detection:
 - via step overlap [Song et.al. (2008)] or motion range analysis extracted from 2D video material partially in combination with a pressure mat [Pluk et.al. (2012)]
 - examination of back's posture [Viazzi et.al. (2013) & (2014)]
 on 2D (side view) or 3D (top view) recordings
- body condition determination:
 - using cow shapes, reconstructed with PCA-methods [Azzaro et.al. (2011)] or by fitting parabola in thermal images [Halachmi et.al. (2013)]
 - from angles and lengths between anatomical points [Bewley et.al. (2008) & Bercovich et.al. (2012)]
 - backfat thickness estimation using traits extracted from 3D time-of-flight recordings [Salau & Weber et.al. (2014)]

These are indicative lists and do not claim completeness.

Introduction & motivation Necessity for a holistic solution

- cameras mounted in either side view or top view position
 Systems are either usable for body condition determination or lameness detection, but livestock holders need to monitor both.
- camera distances in side view installations ranged from 3 to 6 meters
 - \Rightarrow Systems are not applicable on most commercial dairy farms.
- ⇒ Feasibility and concept of a system are analyzed, that enables gait analyses and the measurement of body characteristics and fits into pre-existing cow barns.

Materials & methods Microsoft Kinect¹ 3D camera

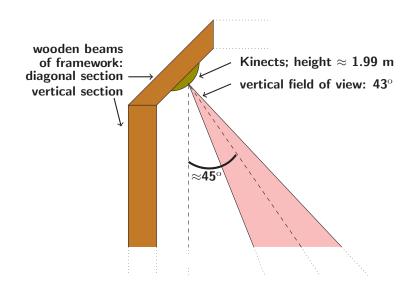
- combined RGB and 3D camera
- "Structured Light": depth values are calculated from the deformation of an infrared pattern projected by the Kinect

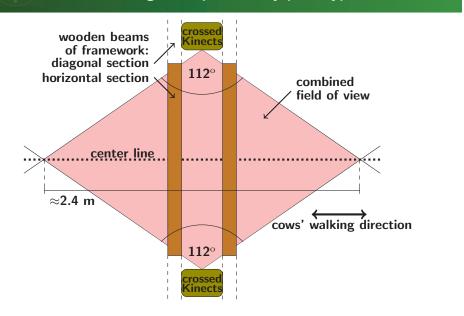
- horizontal field of view: 57°; vertical field of view: 43°
- frame rate: 30 images per second; resolution: 640×480 pixels

 $^{1:} www.microsoft.com/en-us/news/press/2010/mar10/03-31primesensepr.aspx, accessed: 2nd of June 2014 \\ 2: http://cnet3.cbsistatic.com/hub/i/2010/11/04/de990dd0-f0f8-11e2-8c7c-d4ae52e62bcc/5fc4c0312531d3b6 \\ 6e7cf63c39c2c793/kinect.JPG, accessed: 27th of July 2014 \\ \end{aligned}$

Materials & methods Recording unit: preliminary prototype

• wooden framework – passage width: 2.05 m, height: 2.08 m

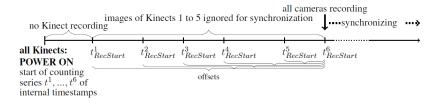

• equipped with 6 Kinect cameras


Materials & methods

Recording unit: preliminary prototype

Materials & methods

Recording unit: preliminary prototype


Materials & methods Data collection

- data collection at cattle auction and cattle show organized by Rinderzucht Schleswig-Holstein eG
- $\bullet~\approx~6$ hours of Holstein Friesian cows led by rope were recorded

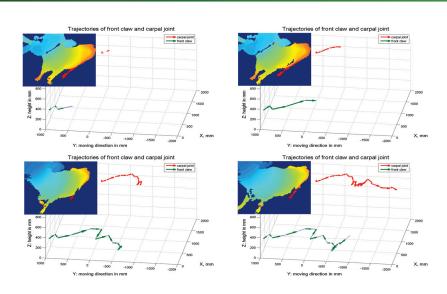
Alpha versions of software and results: Synchronization

- recording is not started simultaneously; synchronization begins when all cameras are recording
- the offsets in recording starts provide orientation where to look for synchronous images
- images are said to be synchronous, when they lie within a time window specified by a threshold (in milliseconds)

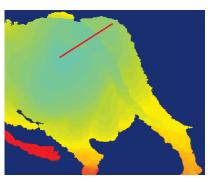
										≥ 45
%	0	82.0	87.1	90.1	90.2	90.4	90.7	90.9	91.0	91.1

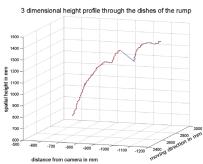
Alpha versions of software and results: Claw determination

- the depth maps' background (framework, floor,...) is set to zero; the moving objects remain as foreground (cow, arms of leading person)
- foreground parts that touch the background are marked as claws



	error rates						
number of tested images	sorting images into			determination			
	cow	parts	empty	of claws			
30,000 (randomly chosen)	0%	7.2%	4.8%	1.2%			

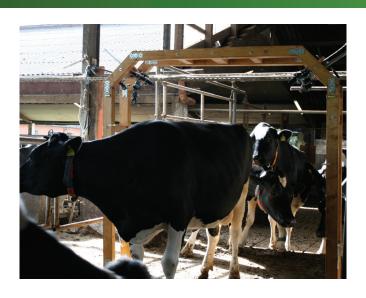

Outlook Gait analyses via trajectories



Outlook

Body condition determination

- information on the principal descriptors for body condition can be extracted from the recordings
- exemplarily: a height profile through the dishes of the rump was taken


Thank you!

 $\begin{array}{c} 11001000101011010010010010011\\ 1011010001101011000100111100\\ \underline{0011001010000111100101000001} \end{array}$

Thank you for your attention!

