Genetic parameters for calving and conformation traits in Charolais x Montbéliard and Charolais x Holstein crossbred calves

A. Vallée, J.A.M. van Arendonk and H. Bovenhuis

Wageningen University, Animal Breeding and Genomics Centre

Acknowledgements

This project is funded by Gènes Diffusion

www.genesdiffusion.com

Introduction

- Dairy cows not used for replacement are mated to beef sires to produce crossbred calves for beef production
- Economic value linked to calving difficulties and the conformation
- Montbéliard and Holstein
- Charolais beef sires are selected to produce the best crossbreds

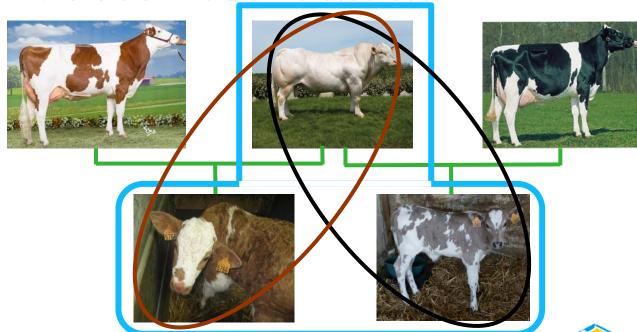
Are bulls producing the best Charolais x Montbéliard calves also the best for Charolais x Holstein calves?

Introduction

In pigs and poultry, genetic correlations lower than 1 between purebred and crossbred lines (Zumbach et al., 2007)

Different environments

■ In cattle, low correlations between breeding values of beef sires estimated on purebred and on crossbred progeny (Tilsch et al., 1989)



Objectives

Estimate heritabilities and genetic correlations for calving and conformation traits in crossbred calves

- 1. Separately for Charolais x Montbéliard and for Charolais x Holstein crossbreds
- 2. Between same traits measured in Charolais x Montbéliard and in Charolais x Holstein crossbreds

Population

■ 38,864 crossbred calves born between 1986 and 2012

391 sires of which 367 with offspring in both populations

59 %

41 %

Traits

At calving

Calving difficulty

from 1 (easy) to 5 (difficult)

Birth weight

Kg

Assessed by farmer

Conformation

Bone thinness from 1 (thin) to 5 (thick)

Height from 1 (small) to 5 (tall)

Muscular development, 3 visual notations

from 1 (poor) to 9 (high)

Scored at 22 days of age on average 19 classifiers

Model

Animal model

- Fixed effects
 - sex (2 classes)
 - classifier (19 classes)
 - combination between birth year (from 1986 to 2012) and the birth season (three-month periods)
 (104 classes)
- Random effects
 - animal

Relations on the (charolais) paternal side were used to construct A

Analysis

Within the same crossbred population

- univariate analyses to estimate heritabilities
- bivariate analyses to estimate genetic correlations between different traits

Between the two different crossbred populations

 bivariate analyses to estimate heritabilities and genetic correlations between the same trait

ASREML (Gilmour et al., 2009)

Results

Heritability within crossbred population

	Charolais x Montbéliard h ²	Charolais x Holstein h ²
Calving difficulty	0.16	0.12
Birth weight	0.26	0.20
Height	0.33	0.36
Bone thinness	0.32	0.30
Muscular dev.	0.35	0.30

SE between 0.02 and 0.04

Results

Genetic correlation within crossbred population

	Charolais x Montbéliard	Calving difficulty	Birth weight	Height	Bones thinness	Muscular development
	Calving difficulty					
	Birth weight	0.86	-			
	Height	0.54	0.71	_		
	Bones thinness	0.27	0.20	0.44	-	
	Muscular dev.	0.47	0.18	-0.10	0.01	-
4	Charolais x Holstein	Calving difficulty	Birth weight	Height	Bones thinness	Muscular development
	Calving difficulty	_				
	Birth weight	0.87	-			
	Height	0.67	0.68	-		
	Bones thinness	0.42	0.52	0.45	-	
	Muscular dev.	0.49	0.41	0.01	-0.02	-

SE between 0.03 and 0.08

Results

Genetic correlation between crossbred population

	rg	p- value *
Calving difficulty	0.91	0.01
Birth weight	0.96	0.05
Bones thinness	0.70	< 0.01
Height	0.80	<0.01
Muscular dev.	0.99	0.75

SE between 0.02 and 0.05

* from Likelihood ratio test

Conclusion and discussion

- Estimates of heritability and genetic correlation are similar to literature (Bouquet et al., 2010; Phocas and Laloe, 2003; Mujibi and Crews, 2009, Colleau et al. 1989)
- Calving difficulty and birth weight highly genetically correlated
 Conformation traits moderately genetically correlated
- Calving difficulty, bone thinness and height are genetically different traits between the 2 crossbred populations

Conclusion and discussion

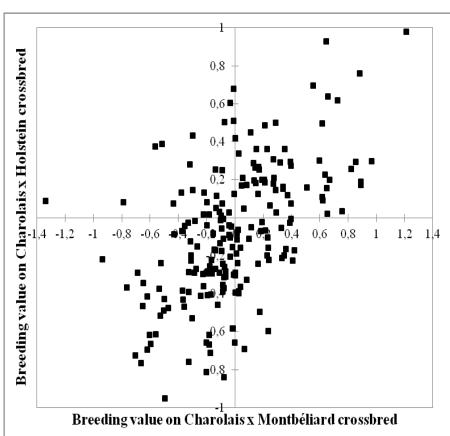
Why are they genetically different traits?

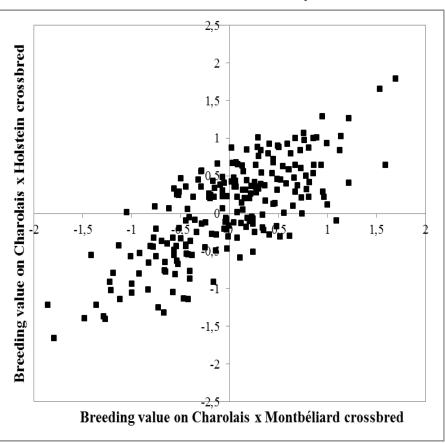
- Genotype by environment interaction differences in maternal environment (Cowley et al., 1989; Rhees et al., 1999; Barker, 1998)
- Epistatic interactions
 effect of Charolais genes depends on the background genes of
 the dam (Montbéliard or Holstein)
- Indirect genetic effect
 maternal genotype and genotype of the offspring
 (Maestripieri and Mateo, 2009)

Implication

- Evidence of different ranking of sires depending on the dam breed they are mated to
- Commercial interest to produce separated genetic evaluation
- Opportunity for labeling

Thank you for your attention





Comparison of sires EBV

Bone thinness

Muscular development

