

Sensitivity of beef cattle farms to weather hazards according to their forage systems

C. Mosnier, M. Lherm, J. Devun

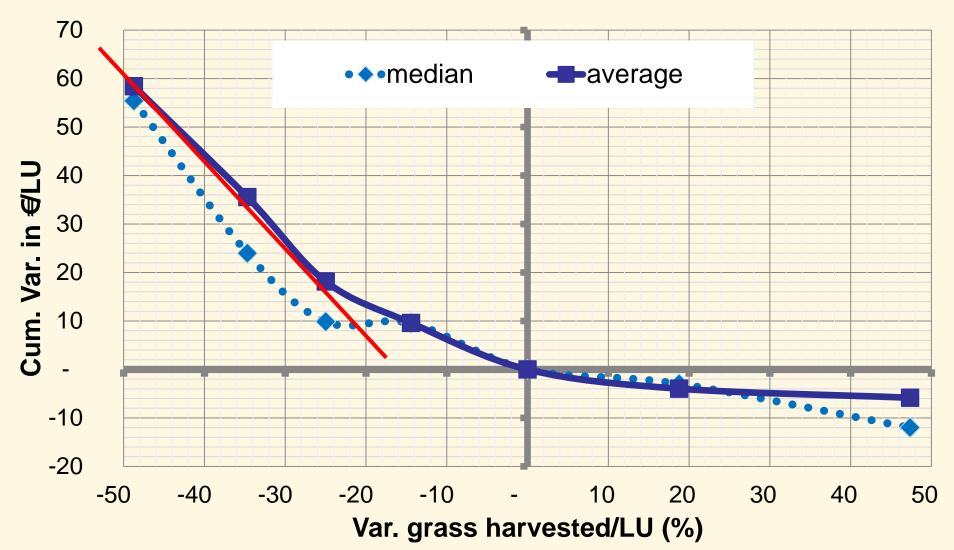
1: INRA, UMR1213 Herbivore, F-63122 Saint-Genès Champanelle

2 : Institut de l'Élevage, 9 allée Pierre de Fermat, F-63170 Aubière

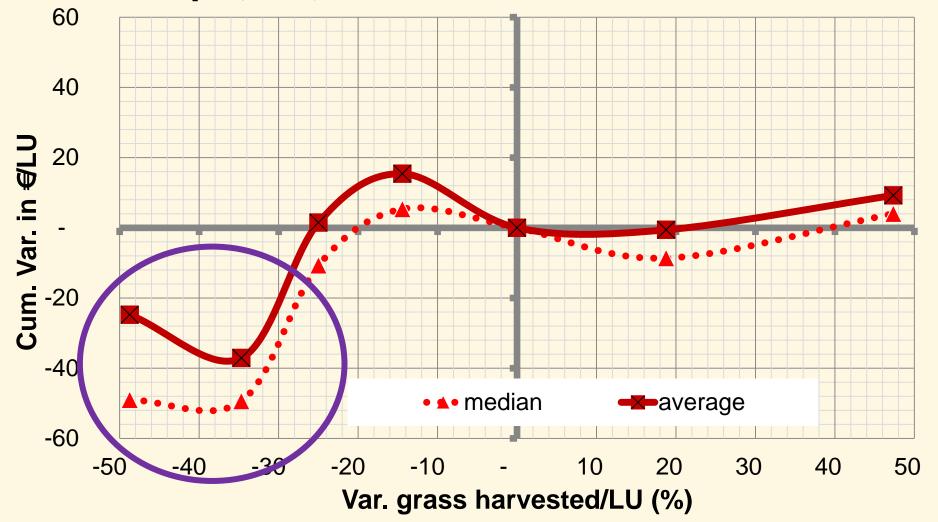
Introduction

- Importance of grassland in suckler cow system
- Currently: a public fund compensates farmers in the event of agricultural calamities
- Replaced by private pasture yield insurance?
 - ➤ Obj1: Quantify the impacts of grassland yield variability on farm production and on economic results
- In theory diversification of forage systems decreases farm exposure to weather risks and enhance flexibility
 - ➤ Obj2 : Is variability reduced in farms with forage crops or silage grass?

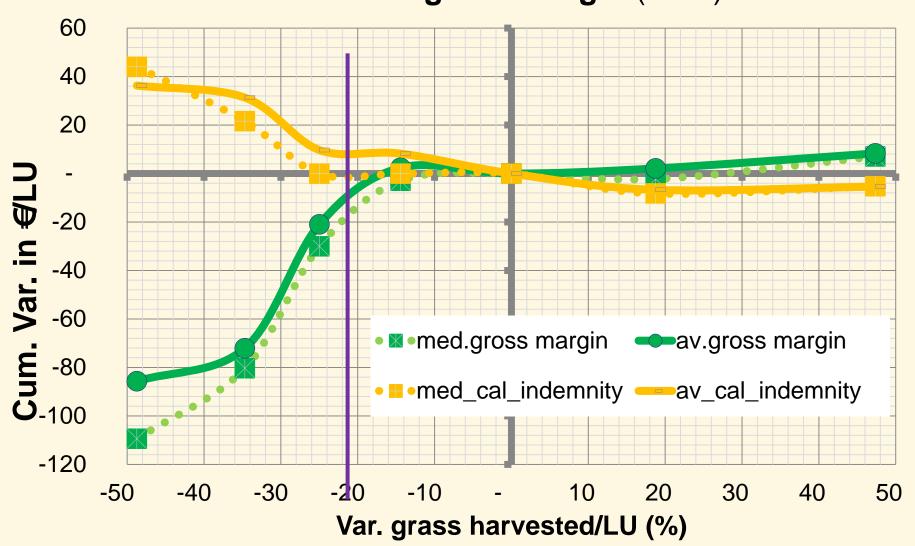
Method


- Descriptive analysis of real farm data
- Indicator of pasture yield variation =
 variation of the total quantity of grass harvested
 by livestock unit relative to farm average value
- Farm typology of forage system
 - « Forage crop » : forage crops > 1% of forage area
 - « silage » : silage represents more > 15% of the pasture area harvested in 1st cut
 - « hay only »

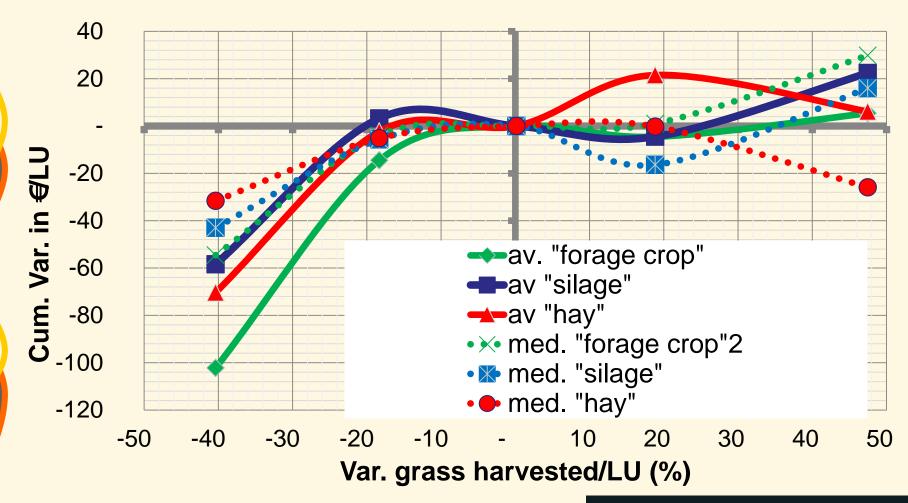
Data


- French national panel data base from « Réseaux d'élevage »
 - Economic and technical Farm Data over the period 2000-2009
- Farm re-sampling
 - Farm present > 5 years
 - Regions where the three forage systems are present
 - Farm specialized in beef production and selling mostly lean males

	Forage	grass		
	Crop	silage	Hay	total
Nb of observations	627	464	444	1535
UAA (ha)	129	128	125	128
Livestock Unit	128	124	100	119
forage crop (% forage area)	6	0	0	3
male fattening (%)	24	11	14	18


Cumulated variation of production costs (€/LU)

Cumulated variation of animal and forage area
receipt (€/LU)



Cumulated variation of gross margin (€/LU)

Results: differences between forage systems

Cumulated variation of gross margin (€/LU)

Results: differences between forage systems

	Average			Inter annual Standard deviation			
	Forage crop	Silage	Hay only	Forag e crop	Silage	Hay only	
Receipt /LU	639	647	573	78	75	84	
Op. cost/LU	288	285	209	46	48	42	
GM/LU	351	362	365	82	80	87	
Net profit/ WU	18 516	17 737	23 038	11 195	10 981	14 428	

Note: Tukey test: significantly highest and lowest value at 5% confidence

Conclusion: main results

Pasture yield variability

➤ Economic resilience of suckler cow farm for variation of grass harvested per LU above -20%, but important impact below -20%

Forage system

-No clear advantage of forage crops and silage grass in reducing exposure to risk nor in improving average economic result

Conclusion: limits and perspectives

Limits

- Importance of overall variability: structural farm changes, price variability, market crisis
- Accuracy of grass production estimation by farmers?
- Sensitivity of variation of grass produced per ha?

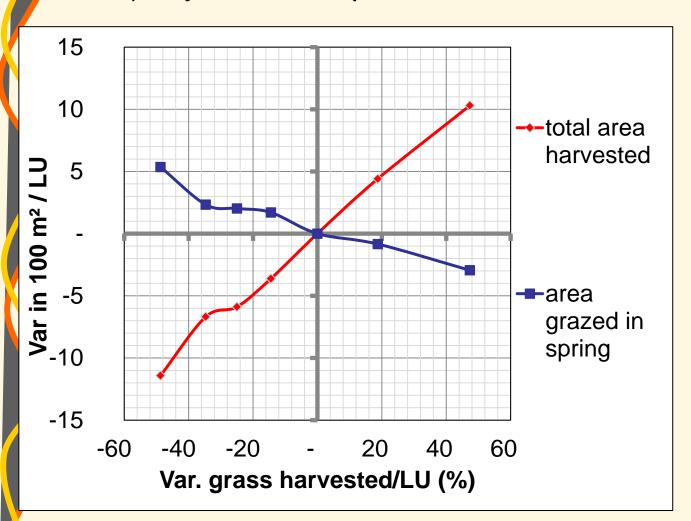
Perspective

- Differences of sensitivity between regions, farm size, forage stock..?
- Methodology :
 - More integrative econometric methods
 - Mathematical programming model

Sensitivity of beef cattle farms to weather hazards according to their forage systems

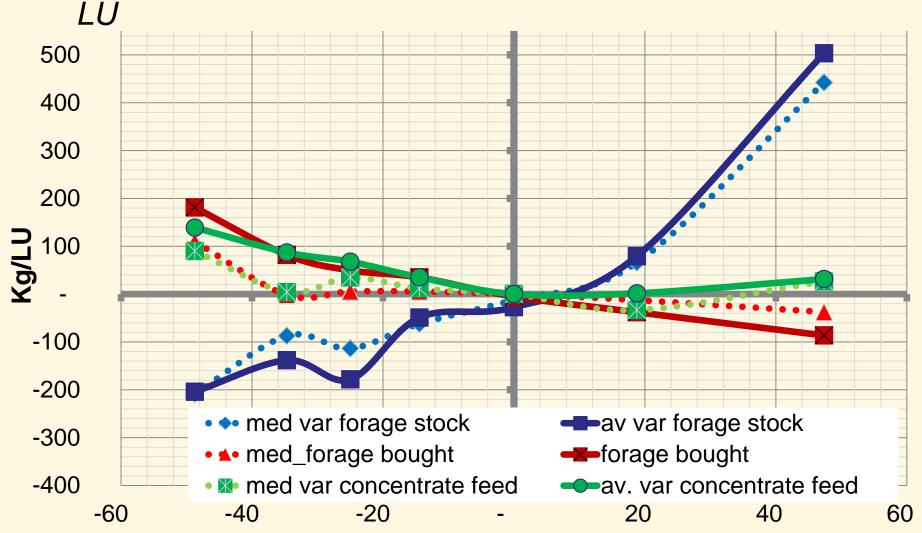
C. Mosnier, M. Lherm, J. Devun

- 1 : INRA, UMR1213 Herbivore, F-63122 Saint-Genès Champanelle
- 2 : Institut de l'Élevage, 9 allée Pierre de Fermat, F-63170 Aubière


Results: 2) differences between forage system

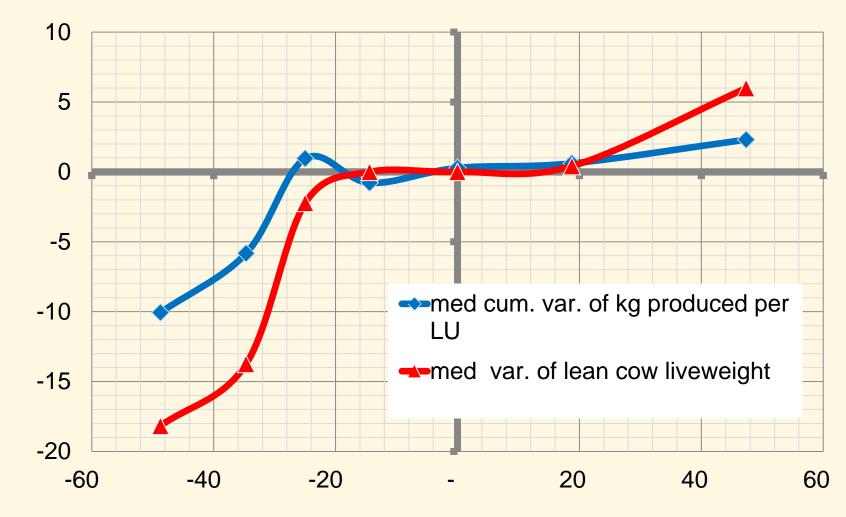
	Average			Interannual s.d.		
	Forage	Silage	Hay only	For	Sil	Hay
area of grass harvested (are/LU)	40	50	49	9	12	9
Forage purchased /LU				139	196	154
Concentrate feed	549	621	435	129	138	125
Animal production /LU)	298	296	276	25	23	23

Note: Tukey or Levene test: significantly highest and lowest value at 5% confidence


Results: 1) Quantifying impact of interannual variation of grassland production

1) adjustment of pasture area end-use

➤ grazing is prefered over haymaking when grass production decrease


cumulated variation of animal feeding source in kg /

Var rel grass harvested/LU (%)

Variation of animal production (kg)

Var. in kg

Var. grass harvested/LU (%)

Results : 2) differences between forage system

Farm structures

	Forage Crop	grass silage	Hay
Nb of observations	627	464	444
UAA (ha)	129	128	125
Worker Unit	1.8	1.9	1.5
Livestock Unit	128	124	100
LU/ha Forage area	1.27	1.16	1.05
commercial crop (%)	17	14	19
forage crop (%)	6	0	0
male fattening (%)	24	11	14

Note: Tukey HSD test: significantly highest and lowest value at 5% confidence

Results: 2) differences between forage system

	Average			Interannual s.d.		
	Forage	Silage	Hay only	For	Sil	Hay
area of grass harvested (are/LU)	40	50	49	9	12	9
Forage harv. (kg/LU)	2 147	1 899	1 822	399	447	504
Forage purchased /LU				139	196	154
Concentrate feed	549	621	435	129	138	125
Animal production /LU)	298	296	276	25	23	23