

Faculty of Agricultural and Nutritional Science

Christian-Albrechts-University Kiel

Institute of Animal Breeding and Husbandry

Efficient fragmentation of animal trade networks by targeted removal of central farms

Kathrin Büttner^{1,2}, Joachim Krieter¹, Arne Traulsen² and Imke Traulsen¹

¹Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Kiel, Germany ² Max Planck Institute for Evolutionary Biology, Plön, Germany

64th Annual EAAP Meeting Nantes, France, August 26th to 30st, 2013 Session 33, abstract number 16908, kbuettner@tierzucht.uni-kiel.de

or culling

- Extensive economic losses in the livestock industry by animal diseases
- Transport of live animals: Major risk factor for the spread of infectious diseases
- Source of classical swine fever virus infection in German domestic pig herds from 1993 – 1998 (Fritzemeier et al., 2000)
 - → Secondary and follow-up outbreaks

Network view of animal movements

→ Farms: nodes

→ Trade contacts: edges

Network analysis

- → Detection of central or important farms in the network
- → Characterisation of network topology

Network view of animal movements

→ Farms: nodes

→ Trade contacts: edges

Network analysis

- → Detection of central or important farms in the network
- → Characterisation of network topology

Aim of the study

- → To characterize the changes in the network topology by successive removal of the most central farms in the trade network
- → To evaluate which centrality parameter is the most suitable measure for a rapid fragmentation of the trade network
- → Interruption of the chain of infection

Materials and methods – Data basis

 Trade network of the pork supply chain from a producer community in Northern Germany

Observation period:

June 2006 to May 2009

Transported livestock:

Piglets, pigs, sows and boars

- Three time intervals
 - → 1 Three-year network
 - → 3 Yearly networks
 - → 36 Monthly networks
- Network properties:

Directed & static

Materials and methods – Data basis

Number of farms and trade contacts in the different time intervals

	Three-year	Yearl	Yearly networks			Monthly networks		
	network	Mean	Min	Max	Mean	Min	Max	
Number of farms	483	322	319	323	129	107	148	
Number of trade contacts	<u>5</u>							
Dynamic	4635	1545	1522	1571	427	359	479	
Static	926	449	431	468	114	93	134	

Materials and methods – Centrality parameters

- Degree: Number of direct trade contacts
 - → Ingoing trade contacts: In-degree
 - → Outgoing trade contacts: Out-degree
- Infection chain: Number of direct and indirect trade contacts regarding the chronological order of the trade contacts
 - → Ingoing trade contacts: Ingoing infection chain
 - → Outgoing trade contacts: Outgoing infection chain

Results – Temporal properties

- Centrality parameters based on the outgoing trade contacts (Out-degree & outgoing infection chain)
 - → Stable characteristics within time
 - → In all time intervals the same farms are the most central
- Centrality parameters based on the ingoing trade contacts (In-degree & ingoing infection chain)
 - → Strong fluctuations in the ranking of the farms
 - → Small range of the centrality parameters

Materials and methods – Network resilience

Properties of networks with a right-skewed distribution of the centrality parameters

→ Random removal Highly resistant

→ Targeted removal
Highly vulnerable

ightarrow PERCOLATION

- Evaluation criteria for the percolation process
 - → Number of holdings in the largest network component depending on the number of removed holdings

Results – Targeted removal

Three-year network: In-degree & out-degree

— Out-degree

Optimal combination

Reduction of the size of the largest component by more than 75%:

Number (Proportion) of removed farms

- → In-degree:
 - 220 (46 %)
- → Out-degree:
 - 31 (6 %)

Results – Targeted removal

Three-year network: Ingoing infection chain & outgoing infection chain

Reduction of the size of the largest component by more than 75%:

Number (Proportion) of removed farms

- → Ingoing infection chain:
 - 362 (75 %)
- → Outgoing infection chain:
 - 32 (7 %)

- ··· Ingoing infection chain
- Outgoing infection chain
- Optimal combination

Results - Targeted removal

Yearly networks

Monthly networks

Results – Optimal combination

Targeted removal in comparison to the optimal combination

Improvement in % of network decomposition by removal of the optimal combination of the first three farms in comparison to the targeted removal of farms regarding the calculated centrality parameters

Parameter	Three-year network	Yearly networks	Monthly networks
In-degree	20.5	30.7	19.2
Out-degree	1.0	1.7	1.4
Ingoing infection chain	20.5	30.6	19.9
Outgoing infection chain	7.9	5.6	1.5

- Stable characteristics for all observed time periods
 - → Centrality parameters based on outgoing trade contacts
- Right-skewed distribution for all calculated centrality parameters
- Appropriate method to interrupt the chain of infection:

Successive removal of the most central farms regarding the parameters

- → Out-degree
- → Outgoing infection chain
- The targeted removal by out-degree was closest to the removal of the optimal combination

Preventive and control measures should consider the parameters based on the outgoing trade contacts

Thank you for your attention!

