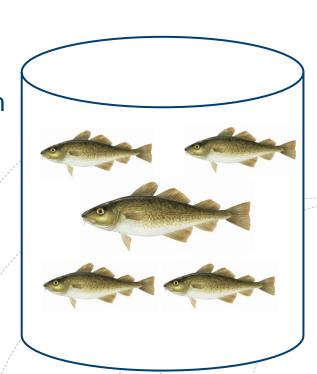


Direct and social genetic parameters for growth and fin damage traits in Atlantic cod (*Gadus morhua*)

- H. M. Nielsen¹, B. B. Monsen^{1,2}, J. Ødegård¹, P. Bijma³,
- B. Damsgård¹, H. Toften¹, I. Olesen^{1,2}


¹Nofima, Norway

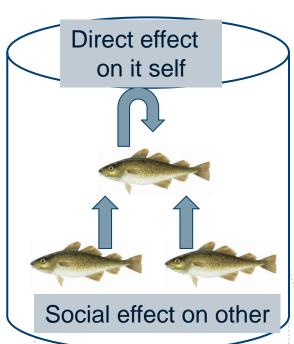
²Norwegian University of Life Sciences

³Wageningen University

Introduction

- Atlantic cod: newly farmed specie
- Norwegian breeding program started in 2002 based on wild fish
- Omnivorous and shows cannibalistic behavior
- Social interactions e.g. aggressions between fish when reared in tanks or net-cages
- Genetic component?

Introduction


Socially affected traits:

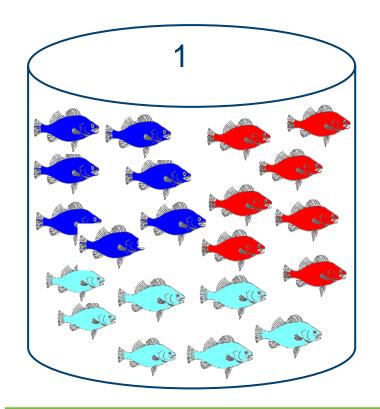
The phenotype of an individual may depend on genes in other individuals

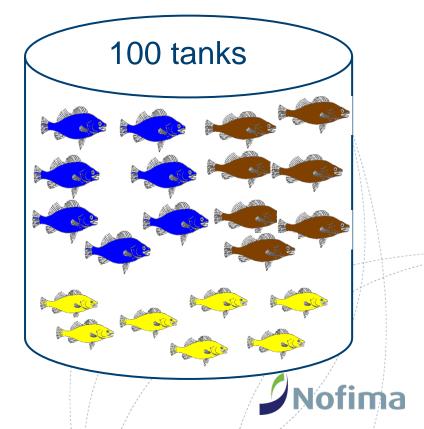
Each fish has:

- 1) Direct effect on self
- 2) Social effect on others = social interactions


- How well the fish is growing also depends on the other fish in the tank
- Classical models for BV estimation only accounts for the direct effects

Aim


To test if there were indications of social genetic effects for traits affecting fish welfare and growth in Atlantic cod



Experimental design

- 2100 cod (6 month, 34.5 g) from 100 full and half sib families (21 fish/family)
- 100 tanks each with 21 fish
- The 21 fish /family were distributed randomly in 3 tanks
- Each tank contained 21 fish from 3 different families (7 fish/family)

.

Recordings and traits

- 6 weeks of experiment
- Fish were fed restricted in order to facilitate interactions

3 Recordings: 1) at start of experiment (Recording 1)

2) after 2 weeks (Recording 2)

3) At the end of experiment (Recording 3)

Traits: Weight (g)

Fin damage: (indicator of welfare due to agression and cannibalism)

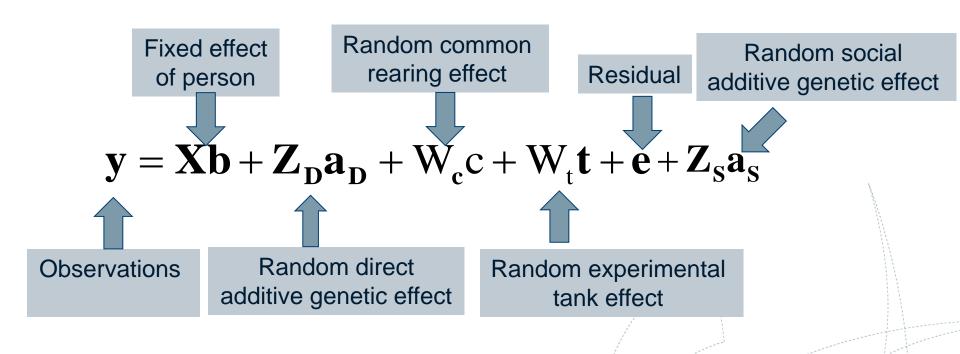
Fin erosion: (0 -100% erosion), scored at the end of the experiment

Fin length: measured at all 3 recordings

Digital analysis of fin length

- Photo of fish to measure fin length by digital analysis
- Fish were placed on a uniform and white background with the left side of fish facing up
- A reference ruler was found in the bottom.

Fins measured:


- 1) First dorsal fin
- 2) Second dorsal fin
- 3) Third dorsal fin
- 4) Caudal fin

- Digital analysis tool (MATLAB) to measure fin length
- Fin length scored by 3 different persons

Statistical analysis

- 1) Traditional animal model
- 2) Animal model including a social genetic effect Compared using Log likelihood

Estimated parameters - social model

$$\tilde{A}^{2}_{A(D)}$$
 = Direct additive genetic variance

$$\tilde{A}^{2}_{A(S)}$$
 = Social additive genetic variance

$$\tilde{A}_{A(DS)}$$
 = direct -social additive genetic covariance

$$\tilde{A}^2_{TRV}$$
 = Total heritable variance

=
$$\tilde{A}^2_{A(D)}$$
 + [2(n-1) × $\tilde{A}_{A(DS)}$ + (n-1) $^2\tilde{A}^2_{A(S)}$], (n=21)

$$\tilde{A}_{P}^{2}$$
 = Phenotypic variance

=
$$\tilde{A}^{2}_{A(D)}$$
 + [(n-1) × $\tilde{A}^{2}_{A(S)}$] + \tilde{A}^{2}_{e} + \tilde{A}^{2}_{tank} + \tilde{A}^{2}_{c} , (n=21)

$$= \frac{\tilde{A}^2_{TBV}}{\tilde{A}^2_{P}}$$

Results: Weight

No significant social effects!

	Recording 2	Recording 3
LogL (P >)	(0.38)	(0.23)
h ²	0.33 œ0.14	0.24 œ0.13

Results: Fin erosion-social model

FIN

Parameter	First dorsal	Second dorsal	Third dorsal	Caudal
LogL (P<)	(0.15)	(0.001)	(0.001)	(0.57)
$\tilde{A}^2_{A(S)}$	0.07 œ0.09	0.19 œ0.10	0.03 œ0.02	0.05 œ0.05
$\tilde{A}_{A(DS)}$	1.79 œ1.19	0.54 œ0.44	0.04 œ0.09	0.09 œ0.23
T ²	1.29 œ0.33	1.37 œ0.60	0.48 œ0.39	0.43 œ0.36

Results: Fin length – social model

LogL < 0.001 for all 4 fins at both recording 2 and 3!

		Fin				
		First	Second	Third	Caudal	
Recording		Dorsal	dorsal	dorsal		
2	$\sigma_{A(DS)}$	0.03 œ0.06	0.03 œ0.01	0.03 œ0.02	0.004 œ0.06	
	T^2	1.35 œ0.27	0.76 œ0.14	0.94 œ0.20	0.73 œ0.12	
3	$\sigma_{\sf (AS)}$	0.03 œ0.01	0.05 œ0.04	0.03 œ0.01	0.03 œ0.01 0.01 œ0.01	
	T ²	2.49 œ0.54	2.22 œ0.57	2.31/œ0.35	0.70 œ0.20 Nofima	

Conclusion

 Significant social effects for fin erosion for 2 fins and for length of the four fins

However, a larger experiment is need to get more precise estimates

