

Multi-criteria evaluation of plant resource for livestock farming systems under Tropics

<u>H Archimède</u>, C Marie Magdeleine, L Rodriguez , D Bastianelli, G Alexandre, P Lecomte, M Boval , E Gonzalez, G W Garcia D Sauvant

Why we need a multi-criteria evaluation?

- The context of agricultural production is changing
 - Competition for resources
 - Less land for agriculture (7,95 ha/ha in 1900 to 1,60/ha in 2050, FAO) with a competition between crops and livestock
 - Water (fresh water is scarce, only 2,5% of all water resources; production of livestock feed : 1 M³ water for 0,5 to 5 kg feed)
 - Climate change (Thornton, 2009)
 - Contribution of agriculture to GES: 18%
 - Reduction of biodiversity (Feed = Maize + soybean)
 - Socio-cultural modifier (livestock welfare...)

Why we need a multi-criteria evaluation?

- News challenges for agriculture
 - Contribute to GES reduction
 - Reduce use of fossil Energy (Fertilizers, Pesticides, Transportation, tillage..)
 - Increase carbon sequestration in soil and biomass
 - Save water
 - Contribute to energy production
 - Develop biodiversity
 - Increase productivity by way of Agro-ecology concepts

Why we need a multi-criteria evaluation?

 Adapt plant criteria evaluation to news challenges for agriculture

- "Environmentally sustainable production of food, feed and fuel from natural resources in the tropics" (Reg Preston, 2009)
- "Energy-Smart" food for people and climate (FAO, 2011)

What is multi-criteria evaluation of plant?

- An on going concept
- An evaluation of plant which take into account :
 - the multiplicity of plant functions
 - its impact on the land and farm

- An evaluation which allows to predict livestock responses to consumption
 - Livestock performances
 - Livestock heath and welfare
 - Emission of certain compounds in the environment

What is the most appropriate scale to achieve the multi-criteria?

 A major question: "How to manage potentials contradictions between the levels of organization of territories?":

The best feed is not necessarily the one with the lowest negative environmental impacts

What is the most appropriate scale to achieve the multi-criteria?

- The plant
 - Too small to take into account the interactions?
- The animal
 - operational level / farmers ?
- The farm operational level / farmer ?
- The territory (land)
 - Too large to take into account the variability of the factors related to farmer management?

Multi-criteria Evaluation Animal scale

Feed and industrial products

Meat

Milk

Leather

Wool

Energy

Labor

Effluents

Releases to environment

gas (CH4, CO2)

Urine (N)

Feces (N, Energy)

Multi-criteria Evaluation

Animal Scale

• The classical approach:

Balance between "Nutrients requirements and nutrient inputs" of livestock to achieve the production potential

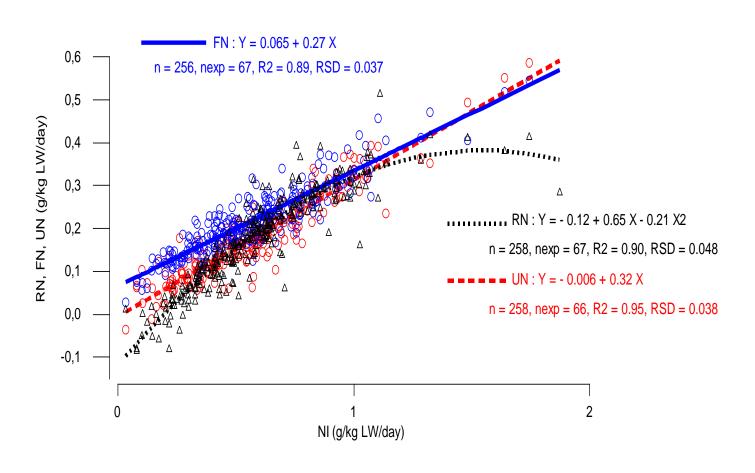
- The multiple responses approach (Sauvant, 2009) should be based integration of representative parameters of Animal performance
 - Animal performance
 - Feed efficiency
 - Quality of products
 - Environmental impact
 - Animal Health and welfare
 - **–** \hat{i}

Multi-criteria Evaluation Animal Scale

This new concept can be applied in practice if multiple responses of the animals to the diets or feeding practices are known and modeled.

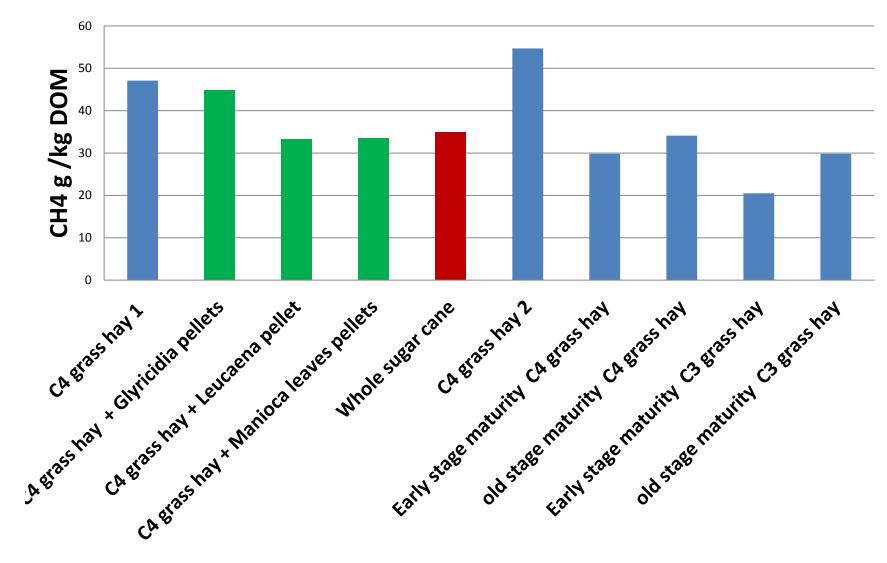
As a consequence we need:

- identification of criteria that are to be optimized;
- modeling the marginal responses of each criteria to the diets and the dietary practices
- Knowledge about **relationships among the responses** to each determinant:
 - to know the possibilities of compromise between antagonistic responses.
 - the weights between criteria according to the importance accorded to them, even economical weights.
 - Definition of tools to achieve these optimizations
- Interactions between feeds

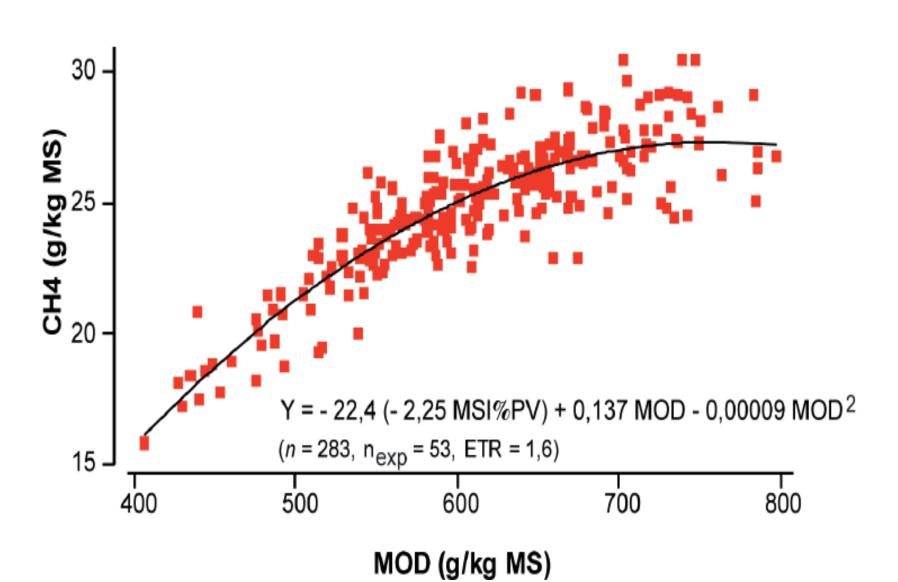

Multi-criteria Evaluation Animal scale

Antagonistic responses:

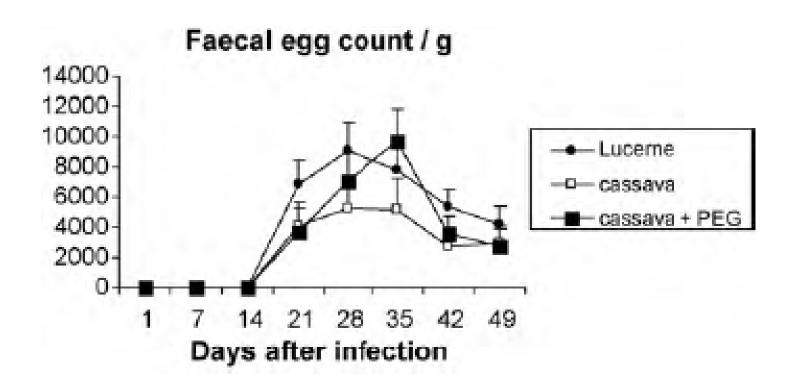
	Feed components			
	Fiber	Starch	Nitrogen	Tannins
Animal				
performance	-	+	+	-
CH4 emission				
	-	+	?	+
Animal health				
and welfare	+	-	+	+/-
Fecal and urine			-	
emission				


Relations between N intake (g / kg LW / day) and urinary N, fecal N and N retained (g / kg LW / J)

(Salah et al, 2013)


Diet effect on methane emission of rams in tropical area

(Archimède et al 2013, unpublished results)


Feed and GES production

(Sauvant et al, 2010)

Multi-criteria evaluation of the plant Animal Level

Effect of tannins on resistance of small ruminants against gastro-intestinal strongles (Marie-Magdeleine et al, 2010)

Multi-criteria evaluation of the plant Animal Level

We need to improve our knowledge on plant bioactives

Available online at www.sciencedirect.com

PHYTOCHEMISTRY

Phytochemistry 69 (2008) 299-322

www.elsevier.com/locate/phytochem

Review

Plant bioactives for ruminant health and productivity

Simone Rochfort a,*, Anthony J Parker b, Frank R. Dunshea c

Multi-criteria evaluation of the plant Animal scale

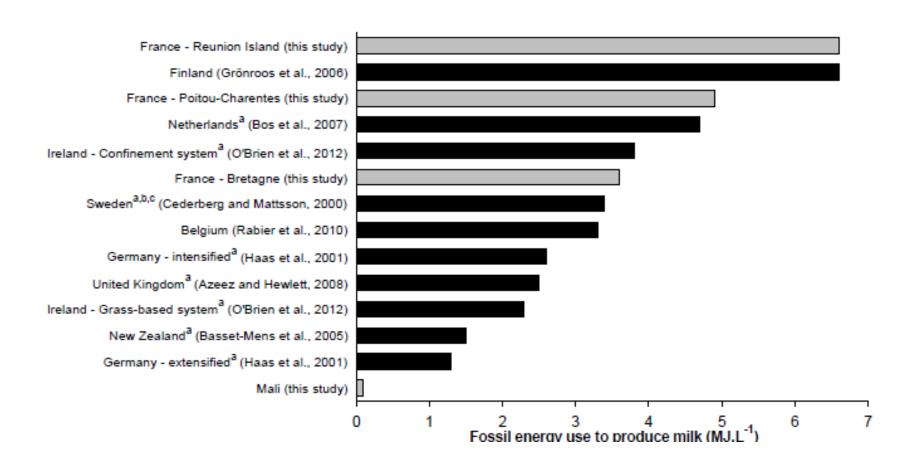
Perspectives

- Identification of predictors of multiple response (performance and quality of products, welfare and health, environmental impact
- New design for in vivo experiments (laws response) to study simultaneously multiple responses of animals to a large typology of feeds and diets
- Identification of indicators, predictors, tools to predict
- Tools:
 - Identification of tools to predict biological responses
 - Quantitative analysis of databases (meta-analyzes)
 - Modeling multiple responses of animals

Limits of the animal scale:

overestimate the feeding function and "adjustment" for other functions

Multi-criteria evaluation of the Plant



Farm scale

- Limits of the animal scale:
 - Mainly a feed approach
 - Other functions for plants
- Others functions and criteria
 - Agronomic productivity
 - Energy production
 - Carbone sequestration
 - Soil fertility
 - Recycling of some livestock emission
- Energy cost of feed
- Status of Co-products

Energy cost of milk prodction

(Vigne 2012)

Protein yields of several crops

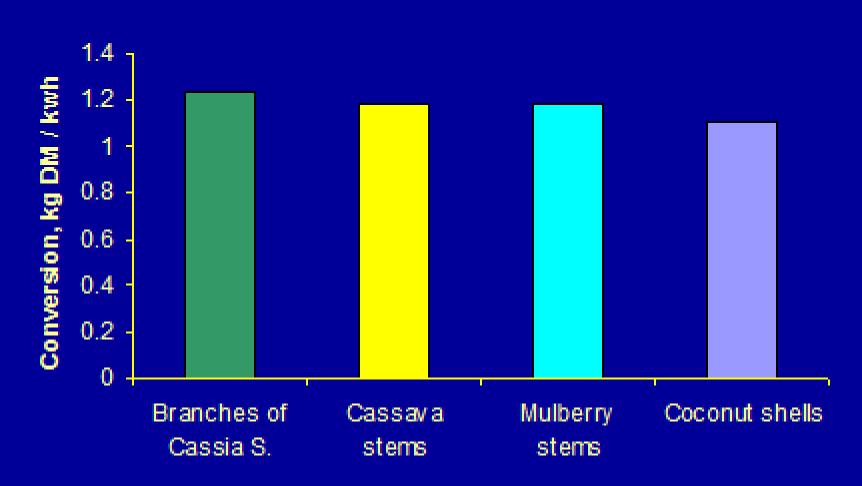
(Archimède et al, 2011)

Fig. 1. Comparative protein yields in some typical crops from grown tropical latitudes.

Multi-criteria evaluation of the Plant Farm scale

Carbone sequestration in tropical grassland:

- 0 à 150 kg C/ha/Year in arid warm area (Lal, 2004)
- 100 à 1000 kg C/ha/year in tropic humid area (Lal, 2004)
- 42 à 45 T C/ha /year on east Africa savanna (Batjes, 2001)


Multi-criteria evaluation of the Plant Farm scale

Shrubs evaluation

- Fractioning
 - Feed fraction
 - woody fraction
- Relatively low productivity for Feed fraction compared with a C4 grassland
- Others function
 - Energy production
 - Carbone sequestration
 - Soil fertility

Conversion of fibrous biomass to electricity in Cambodia

Source: Mich Phalla and Preston 2005

Multi-criteria Evaluation Farm Scale

Define pertinent indicators at the farm scale complementary to those identified for the animal scale

- Efficiency of land use / animal performance
- Energy cost of feed
- energy independence
- Carbone balance / compensation relatively to CH₄ and N₂0 emission
- Nutrients recycling

New tools

- Environmental analysis: Life Carbon Analysis method
- Experimental design for farm scale study

Conclusions

- How to link animal and farm scale approaches
 ?
- How to take into account of seasonality of resource availability?
- Multi-criteria evaluation is a complex process but that requires the production of simple tools for research and decision support at the farm
- The multi-criteria give different values to resources (local value)