

Estimation of genetic parameters for longitudinal measurements of feed intake in Piétrain sire lines

M. Dufrasne^{1,2} - V. Jaspart³ - J. Wavreille⁴ & N. Gengler¹

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège (GxABT-ULg) – Gembloux, Belgium ² Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture – Brussels, Belgium ³ Walloon Pig Breeding Association – Ciney, Belgium ⁴ Walloon Agricultural Research Centre – Gembloux, Belgium

63rd Annual Meeting EAAP 2012 - August 27-31 Bratislava, Slovakia

General context

- Importance of feed efficiency (FE) in livestock production
- Feed intake (FI) is a component of FE
- Selection to reduce FI with constant growth rate
- Electronic feeders → Individual daily FI (DFI) records

General context

- DFI = longitudinal measurements
- Random regression models (RRM) = option for longitudinal data analysis
 - estimation of individual and population curves
- Measurement of DFI is expensive

Context of the study

- Progeny-test of Walloon Piétrain boars in test station
 - Crossbred progeny (Piétrain x Landrace K+)
 - Batches of approximately 100 pigs
 - From 20 kg to 110 kg
 - On average 4 pigs per pen
 - Body weight recorded every 15 days
 - Carcass quality traits recorded on live pigs and on carcasses

Context of the study

- Development of a new genetic evaluation program in the Walloon Region of Belgium
- Genetic evaluation for production traits
- Estimation of genetic merit of purebred
 Piétrain boars in crossbreeding
 - Production pigs mostly crossbred
 - Genetic correlation between purebred and crossbred performances < 1

Context of the study

- FI recording system
 - No facilities to record individual DFI
 - Until 2010: total FI in test station
 - Since 2011: FI recorded every 15 days
 - Total pen FI records
 - Individual mean FI
- FI different
 - Between pigs in same pen
 - During growth period

Objective

To estimate genetic parameters for longitudinal measurements of feed intake (FI) in a crossbred population of pigs

Objective

To estimate genetic parameters for longitudinal measurements of feed intake (FI) in a crossbred population of pigs

To develop a genetic evaluation model for the estimation of breeding values for FI of Walloon Piétrain boars

Data

- Walloon Pig Breeding Association (Belgium)
- 4,095 records of cumulated FI
- 2,127 crossbred pigs Piétrain x Landrace K+
- Walloon test station
- **2007 to 2012**

Description of data

No. of records	4,095
No. of animals in pedigree	7,897
No. of sires	84
No. of dams	163
No. of batches	22
No. of CG (batch x pen)	585
No. of pigs per pen	2-5
Freq. of males (%)	47.55
Freq. of females (%)	52.45

Method

- Variance heterogeneity
 - Homogeneity for each day
 - Heterogenity between days
- Pre-adjustment method
 - Standardization with estimated trait mean and SD per day
 - Pre-adjustment at the last day of test (150 d)

Method

Estimated mean and SD based on the smoothing curves (x = day of test)

$$m_i = 2.033x - 8.8378$$
 (R² = 0.96)
 $\sigma_i = 0.0008x^2 + 0.0252x + 1.381$ (R² = 0.81)

Method

Estimated mean and SD based on the smoothing curves (x = day of test)

$$m_i = 2.033x - 8.8378$$
 (R² = 0.96)
 $\sigma_i = 0.0008x^2 + 0.0252x + 1.381$ (R² = 0.81)

• Standardized and pre-adjusted records y_{ij}^*

$$y_{ij}^* = \frac{y_{ij} - m_i}{\sigma_i} \sigma_{150} + m_{150}$$

Model

Random regression animal model

$$y = Xb + Za + Zp + Wl + e$$

- y = vector of observations
 - Standardized and adjusted cumulated FI

Model

Random regression animal model

$$y = Xb + Za + Zp + Wl + e$$

- **b** = vector of fixed effects
 - Sex
 - Batch

Model

Random regression animal model

$$y = Xb + Z_0 + Z_0 + WI + e$$

- a, p = random regression effects
 - a = additive genetic
 - p = permanent environment

Regression curves modelled with quadratic Legendre polynomials

Model

Random regression animal model

$$y = Xb + Za + Zp + Wl + e$$

- a, p = random regression effects
 - a = additive genetic
 - p = permanent environment
- I = vector of random pen effect
- e = vector of random residual effect

Results: correlations 70 90 110 130 150 Days 50 0.76 0.54 0.25 -0.20 -0.65 0.96 0.82 0.49 70 0.01 90 0.95 0.72 0.28 110 0.90 0.57 0.87 130 High correlations between adjacent ages

Results: correlations 130 Days 70 110 150 50 0.76 0.54 -0.20 -0.65 0.25 70 0.96 0.82 0.49 0.01 90 0.95 0.72 0.28 110 0.90 0.57 130 0.87 Genetic correlations decrease with increasing age intervals

Results: correlations

Days	70	90	110	130	150
50	0.76	0.54	0.25	-0.20	-0.65
70		0.96	0.82	0.49	0.01
90			0.95	0.72	0.28
110				0.90	0.57
130					0.87

Negatives genetic correlations between the very beginning and the end of the testing period

Conclusions

- FI is moderately heritable
- Heritability of FI tends to increase with age
- FI data at the end of the growth period seems to be more informative
- High FI at the beginning not related with high FI at the end
- FI seems to be influenced by different genes during the growth period

Perspectives

- To estimate genetic parameters with more data
- To test different models
- To model FI with growth to individualize FI
- To estimate breeding values and their reliabilities

Acknowledgments

- Collaboration:
 - ➤ Walloon Pig Breeders Association (AWEP)
 - > Walloon Agricultural Research Centre (CRA-W)
 - > ULg Gembloux Agro-Bio Tech (GxABT)

- Study supported by:
 - ➤ Public Service of Wallonia DGO 3
 - National Fund for Scientific Research (FRS-FNRS) through F.R.I.A. scholarship

Author's contact: marie.dufrasne@ulg.ac.be