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Experimental data
M

ateria l and M
ethod s

1,305 Holstein cows (1. lactation): 

–  genotypes
– Illumina 50k SNP-chip
– in total: 40,317 SNPs

–  milk metabolite profiles – hydrophilic phase of milk
– amino acids 
– sugar
– carbon acids
– in total: 190 metabolites ( ~ 2,000 milk metabolites are expected in 

    the literature)

–   milk traits
– fat content
– protein content
– pH value
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Statistical Model

with

farm (ah)  i = 1,...,18,

test day (stp)  j = 1,...,39,

GC-MS batch (gld) k = 1,...,47,

day of lactation (ltp)   ltp є {21,...,120}, 

sire effect (se)  l = 1,...,214

y ijkl=ahi∗stp jgld kb1∗ltpb2∗ltp
2se lijkl
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Workflow - Methods 
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Milk trait

Step 1: 
Determining important
SNPs for an investigated 
milk trait.
- random forest
  (Breiman 2001)

- partial least squares
  (Wold 1966)

Step 2: 
Using a stochastic 
variable selection (SVS, 
Ishwaran & Rao 2005) 
method to determine 
important SNPs. 

Step 3:  
Predicting milk trait from 
SNP-subset using SVS.
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Results – Step 1 (metabolite   milk trait)

Average prediction precision (correlation between estimated and
observed milk trait values):

Random forest Partial least squares
Protein 0.63 0.64

Fat 0.35 0.34

pH value 0.37 0.34

Average number of detected important metabolites (examples):

Protein 16 (Spermidine, Asparagine, Aspartic acid)

Fat 11 (1,3- Dihydroxyacetone, Arabitol)    

pH value 10 (Glycine)

  2  1

More information can be found in
Melzer et al. 2012 (J. Dairy Sci.)
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Average number of detected SNPs:

Approach                    Fat (%)     Protein (%)  pH value

Reduced classical approach     26     83           82

Metabolite approach        129   302      114

Single important metabolites [4;42]         [5;55]   [4;54]
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Results – Step 3 (SNPs  milk trait)

  Fat (%)    Protein (%) pH value
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Summary 

Step 1: 
- both regression methods revealed similar important metabolites
- biological role of some important metabolites with respect to a specific
  milk trait was investigated

Step 2:
- mostly fewer important SNPs were detected for single important     
  metabolites
- important SNPs with high genetic effects for milk traits also showed an  
  impact on at least one of the important metabolites   
→   considering the heritability of metabolites (Poster Session 12 No. 23:
      “Milk metabolites and their genetic variability”, Wittenburg et al., 2012)

Step 3:
- observed prediction precisions were mostly higher for the metabolite  
  approach compared to the reduced classical approach
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Conclusion

- considering an intermediate level in the classical 
  genotype-phenotype map enables various investigation   
  opportunities

- for two investigated milk traits, fat and pH value, the  
  genotype-phenotype map is mirrored on the  
  metabolome level

Our metabolite approach seems to be promising and in 
addition provides functional information.  
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Thank you for you attention!

Thanks a lot for assistance us:
   - Dr. F. Reinhardt,  E. Pasmann (VIT Verden)

   - Dr. U. Kesting, Dr. S. Jakubowski, Dr. S. Hartwig, S. Wolf (LKV Güstrow)

   - Prof. Dr. Meitinger, Dr. P. Lichtner  (HelmholzZentrum München)

   - Prof. L. Willmitzer, Ä. Eckardt (Max-Planck-Institut)

   - Dr. H. Hammon, C. Reiko (FBN, WG nutrition physiology)

   - PD Dr. J. Vanselow, Dr. R. Fürbaß, M. Nimz and M. Anders,

     M. Spitschak (FBN, WG Gene Expression)

   - PD Dr. C. Kühn (FBN, WG QTL Regions)

   - A. Rief, R. Grahl (FBN)

This study was part of the FUGATO plus project Bovine Integrative Bioinformatics for 

Genomic Selection (BovIBI) with financial support of the German Federal Ministry of 

Education and Research (BMBF).
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