

Genetic impact of Hampshire sires on litter size and piglet survival

Nils Lundeheim

Dept. of Animal Breeding and Genetics

Swedish University of Agricultural Sciences; nils.lundeheim@slu.se

&

Timo Serenius, Nordic Genetics

- □Swedish pig production: <4*10⁶ pigs slaughtered per year
- □Commercial sows: Landrace*Yorkshire crossbreds
- □Sire lines: Hampshire (65%) and Duroc (35%)
- □ Female fertility is included in the breeding goal for L and Y, but for H, breeding goal includes 'only' production and conformation
- □What about the paternal influence on litter size and piglet survival? 25% of all born piglets does not live until weaning!!

➤ The study is based on data on purebred Hampshire, from Swedish nucleus herds, provided by the Swedish-Finnish breeding company **Nordic Genetics**

- ➤ Data on purebred Hampshire litters, parity 1 to 4, born in the period 2000 to 2012 in 5 Swedish nucleus herds.
- ➤ Data on 10400 litters / 970 Al-boars /5400 sows was included in the statistical analyses.

Traits analysed: Total born (TB) Stillborn (SB)

Statistical analyses

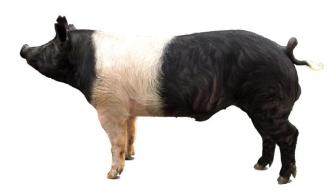
SAS (phenotypic analyses)

DMU (genetic analyses)

Statistical model:

Nucleus herd (fixed)

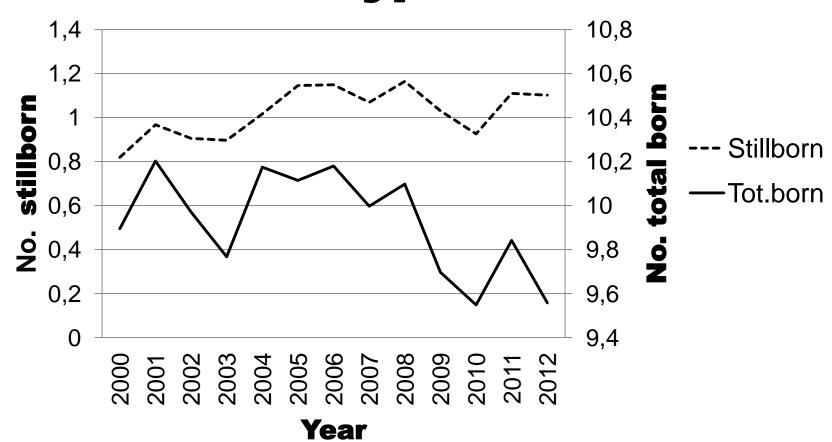
Parity number (fixed)


Birth year of litter (fixed)

Herd-year-month-combination (random)

Sow (random)

Sire (random, genetic)


Phenotypic means

Number of pigs	Hampshire, nucleus herds	H*(L*Y), D*(L*Y) commercial herds (2011)	
Total born (TB)	9.5	14.2	
Stillborn (SB)	1.0	1.1	
Weaned	7.8#	10.7	
Preweaning mort.	0.8#	2.4 (=18.3% of liveborn)	

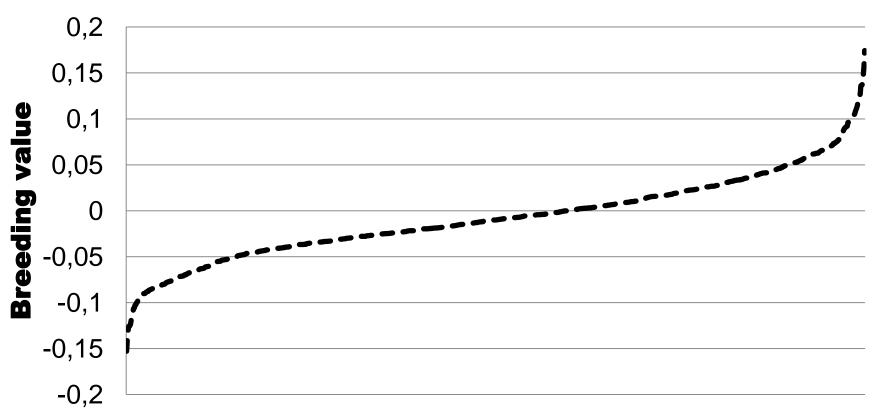
^{*}Not included in the genetic analyses; unknown proportion of crossfostering

Phenotypic trends

Genetic parameters, paternal fertility

Trait	σ_{A}	h ²	r _G
TB	0.42	0.03	+0.49**
SB	0.12	0.01	

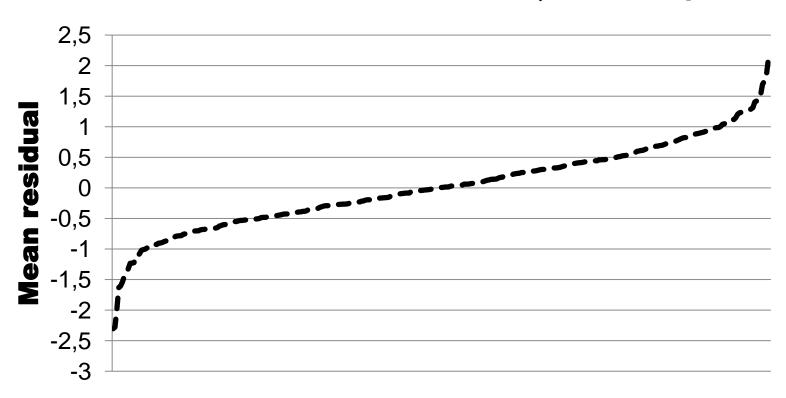
Genetic trends, paternal fertility



Paternal fertility; TB Breeding values for 970 Al-boars



Paternal fertility; SB Breeding values for 970 Al-boars


Means of residuals (TB; > 10 litters / Al-boar; n=347)

Stat. model incl. the fixed effects of parity, herd and year.

Means of residuals (SB; >10 litters / Al-boar; n=347)

Stat. model incl. the fixed effects of parity, herd and year.

Concluding remarks

- Low estimates of heritability for paternal fertility traits. In agreement with previous studies (Köck et al., 2009...)
- Approx. differences (best-worst) in EBV for the AI boars:
 1.4 (TB) and -0.3 (SB)
- Approx. differences (best-worst) residuals for the AI-boars:4.8 (TB) and -4.1 (SB)

Way ahead?????

- Selection for improved paternal fertility in sire lines
- Planned culling of AI-boars with low fertility after 5 (?) months of use. This needs feedback from commercial herds.
- Early indicators of inferior paternal fertility.....

