

63rd Annual Meeting EAAP - Bratislava

Effect of parity and litter size on milk production of sows

J.Y Dourmad¹, N. Quiniou², S. Heugebaert³, F. Paboeuf³, T.T. Ngo¹

¹INRA Agrocampus Ouest, France ²IFIP Institut du Porc, France ³Chambres d'Agriculture de Bretagne, France

Factors affecting milk production in sows

✓ Litter size

- ✓ Linear increase of total production with litter size
- √ Decrease of amount of milk / piglet

✓ Parity

- ✓ Lower milk production in young and old sows
- **✓** Environment
 - ✓ Decreased milk production in hot climate
- ✓ Nutrition
 - ✓ Energy & amino acid supplies
- √ Genotype & selection

Evolution of sow performance in French pig farms

Year	1990	2000	2011	
			average	best 33%
Litter size				
born alive	10.8	11.9	13.20	13.6
weaned	9.4	10.4	11.4	11.8
Litter growth, kg/d	2.020	2.500	2.720	2.850

=> +20% increase in number of piglets weaned/litter

=> +35 % increase in litter growth rate (milk)

=> +11 % increase in piglets growth rate

Prediction of milk production

✓ Prediction equations from piglets growth

```
✓ Noblet & Etienne (1989)
```

=> energy, protein, DM... f(LS, LG, body comp.)

✓ Prediction models

- √Whittemore and Morgan (1990) f(time)
- ✓ Dourmad et al. (2008) => InraPorc® f(time, LS, LG)
- ✓ Hansen et al. (2012) => Meta-analyse f(time, parity, LS, LG)

Important for the determination of sow's nutrient requirements

Objectives of the study

- ✓ Evaluate the effects on milk production of :
 - **✓ Litter size**
 - ✓ Parity of sows

In modern high producing sows

- ✓ Develop prediction equations
 - ✓ to better take account of the variability among sows
 - ✓ to improve the determination of nutritional requirements

Material and methods

- ✓ Data from three experimental farms
 - ✓ 3500 litters born between 2006 and 2010
 - ✓ Crossbred sows : Large White x Landrace
 - ✓ Number of piglets after fostering (1d) and at weaning
 - √ Individual weight of piglets at birth and at weaning

√ Calculation

- √ Piglets and litter growth rate
- ✓ from Noblet and Etienne (1989)
 - Milk
 - Energy Protein Phosphorus
- √ Statistical analysis
 - √ GLM : Farm Parity Litter size Month of farrowing

Performance of litters

	Average	Farm	Parity	LS
N° litters	3510	-	-	-
Parity	3.2	***	-	-
Age at weaning	27.8	***	*	-
Piglets weaned/litter	11.0	***	***	=
Weaning weight, kg	8.60	***	***	***
Piglets gain, g/d	256	***	***	***
Litter gain, g/d	2800	***	***	***

Milk production

	Average	Farm Parity	LS
Milk, kg/d			
per litter	10.7	*** ***	***
per piglet	1.00	*** ***	***
Energy, MJ/d	53.3	*** ***	***
Protein, g/d	487	*** ***	***
Phosphorus, g/d	15.1	*** ***	***

Effect of parity on milk production

Effect of litter size on milk production

Effect of month at farrowing on milk production

Prediction equations of litter weight gain (LG)

LG =
$$\overline{\text{LG}}$$
 x Coeff(Parity, LS, $\overline{\text{LS}}$)

Coeff = Const(Parity)
+ 5.932 x (LS - $\overline{\text{LS}}$)
- 0.514 x (LS - $\overline{\text{LS}}$)²

Const(Parity_{1..8}) = (97.3, 103.7, 104.5, 103.7, 103.6, 101.2, 97.7, 97.5)

Effect on nutritional requirements

- example of digestible lysine requirement -

Effect on nutritional requirements

- example of digestible lysine requirement -

Conclusion

- ✓Increase of milk production
 - √3000 g/d average litter growth rate (in the best 2 farms)
 - √12.0 Liters of milk per day
- **✓ Milk production**
 - ✓ Litter size (linear between 6 and 12 piglets)
 - ✓ Parity (highest in parity 2 to 5)
 - √ Season (lower in summer)
- √50% of variability in milk production explained by sow parity and LS
- Improvement of sow's nutrient requirements
 - On short term : InraPorc®
 - On medium term : precision feeding of lactating sows

Thank you for your attention

