

63rd Annual Meeting of EAAP 2012 Bratislava, Slovak Republic, August 27-31

Genetic variance in environmental sensitivity for milk and milk quality in Walloon Holstein cattle

J. Vandenplas^{1,2}, C. Bastin¹, N. Gengler¹ and H. A. Mulder^{3,4}

¹University of Liege, Gembloux Agro Bio-Tech, Gembloux, Belgium

²National Fund for Scientific Research, Brussels, Belgium

³Wageningen UR Livestock Research, Lelystad, The Netherlands

⁴Wageningen University, Wageningen, The Netherlands

www.robustmilk.eu

- Dairy cows robust to environmental changes
 - Economically desirable for some traits (e.g., increase of homogeneity of dairy products)

- Dairy cows robust to environmental changes
 - Economically desirable for some traits (e.g., increase of homogeneity of dairy products)
- But, variations of observations around the fitted curve during the lactation:

- Dairy cows robust to environmental changes
 - Economically desirable for some traits (e.g., increase of homogeneity of dairy products)
- Environmental factors
 - Macro-environment
 - Identifiable (e.g., temperature)
 - Micro-environment
 - Unknown
- The genetic variance in micro-environmental sensitivity can be studied through genetic variance in residual variance (Hill and Mulder, 2010).

- Potential interesting traits
 - Milk yield
 - Somatic cells score (SCS)
 - Milk fatty acids (FA) composition
 - Saturated FA (SFA)
 - Cholesterol, cardiovascular diseases (Haug et al., 2007)
 - Unsaturated FA (UFA)
 - Healthier for humans (Haug et al., 2007)
 - Milk fat quality properties (Palmquist et al., 1993)
 - C18:1 cis-9
 - Major UFA
 - Body fat mobilization in early lactation (Barber et al., 1997;
 Van Haelst et al., 2008)
 - → poor fertility performances (Bastin et al., 2012)

Aim

To study genetic heterogeneity of residual variance for milk yield, SCS, SFA,

UFA and C18:1 cis-9 separately

- → Estimation of variance components and breeding values (EBV_v) in the residual variance part
- → Using a double hierarchical generalized linear model (DHGLM; Rönnegård et al.,2010)

Data

- 26,887 Walloon Holstein first-parity cows
 - With a known sire
 - 747 herds
 - ≥ 5 cows / herd * test-day
 - ≥ 3 records / cow
 - 146,027 test-day records
 - Milk yield (kg), SCS
 - SFA (g/dL of milk), UFA (g/dL of milk), C18:1 cis-9 (g/dL of milk)
- Pedigree
 - 86,410 animals
 - ≥ 10 cows with records / sire

Mean model

$$y = X\beta + Zu + Zp + e$$

Fixed effects

- -Herd * test-day
- -Lactation stage (classes of 5 DIM)
- -Gestation stage
- -Age at calving * season of calving * major lactation stage (classes of 73 DIM)

Mean model

$$y = X\beta + Zu + Zp e$$

Random effects

- -Additive genetic
- -Permanent environmental

Random residuals

Mean model

$$y = X\beta + Zu + Zp + e$$

Residual variance model

$$V(e) = \exp(X(\beta_v) + W_v h_v + Z_v u_v + Z_v p_v)$$

Fixed effects

- -Herd * calving year
- -Lactation stage
- -Gestation stage
- -Age at calving * season of calving * major lactation stage

Mean model

$$y = X\beta + Zu + Zp + e$$

Residual variance model

$$V(e) = \exp(X_v \beta_v + W(h_v) + Z(u_v) + Z(p_v)$$

Random effects

- -Herd * test-day
- -Additive genetic
- -Permanent environmental

Mean model

$$y = X\beta + Zu + Zp + e$$

Residual variance model

$$V(e) = \exp(X_v \beta_v + W_v h_v + Z_v u_v + Z_v p_v)$$

- Estimation of variance components and breeding values
 - DHGLM method (Rönnegård et al.,2010)
 - Iterations between the mean model and the residual variance model
 - Modified REMLF90 (Misztal, 2012)

Trait	GCV	h² _v
Milk yield	0.17	1.99*10 ⁻³
SCS	0.16	3.47*10-3
SFA	0.12	1.01*10 ⁻³
UFA	0.12	3.57*10 ⁻³
C18:1 <i>cis-</i> 9	0.12	4.17*10 ⁻³

- Low genetic coefficients of variation for residual variances (GCV;
 ≈ genetic SD of the residual variance model)
- In the lower range of GCV for other species (Hill and Mulder, 2010)
- → Presence of some genetic variance in environmental sensitivity

Trait	GCV	h² _v
Milk yield	0.17	1.99*10 ⁻³
SCS	0.16	3.47*10 ⁻³
SFA	0.12	1.01*10 ⁻³
UFA	0.12	3.57*10 ⁻³
C18:1 <i>cis-</i> 9	0.12	4.17*10 ⁻³

- Low heritabilities for residual variances (h²_v)
- → Lower than estimates in other species (0.02-0.05; Hill and Mulder, 2010)
- → Accurate EBV_v estimated from a large data set with enough information per animal (Mulder et al., 2007)

 Low EBV_v sire: less variation in observations within its daughters group than the high EBV_v sire

	Variance		Traits			
	components	Milk yield	scs	SFA	UFA	C18:1 <i>cis-</i> 9
Mean	σ_{p}^{2}	1.11	0.70	0.41	0.14	0.11
model	σ_{u}^{2}	0.57	0.15	1.34	0.30	0.20
Residual	$\sigma^2_{h_V}$	0.13	0.18	0.14	0.20	0.19
variance	$\sigma^{2}_{p_{V}}$	0.53	0.95	0.42	0.33	0.30
model	$\sigma^2_{u_V}$	0.29*10-1	0.25*10-1	0.14*10-1	0.15*10-1	0.15*10 ⁻¹

- Herd * test-day and permanent environmental effects
 - → Substantial contributions to heterogeneity of residual variance
 - → The DHGLM method may provide interesting information for management purposes in terms of variation.

Milk yield	scs	SFA	UFA	C18:1 <i>cis-</i> 9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - Higher EBV → higher EBV_v → ↑ residual variance

Milk yield	scs	SFA	UFA	C18:1 cis-9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - Higher EBV → higher EBV_v → ↑ residual variance
 - Milk yield
 - Highest correlation

Milk yield	SCS	SFA	UFA	C18:1 cis-9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - Higher EBV → higher EBV_v → ↑ residual variance
 - Milk yield
 - Highest correlation
 - SCS
 - Selection of lower EBV would reduce the average level of SCS but also the residual variance of SCS, both involving fewer mastitis cases.

Milk yield	SCS	SFA	UFA	C18:1 <i>cis-</i> 9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - C18:1 cis-9
 - Desirable: high contents in milk with few variation during the lactation
 - But, selection of low EBV_v would decrease the average content in milk of this FA.

Milk yield	scs	SFA	UFA	C18:1 cis-9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - C18:1 cis-9
 - Desirable: high contents in milk with few variation during the lactation
 - But, selection of low EBV_v would decrease the average content in milk of this FA.
 - Correlations ≠ 1.00
 - → Selection feasible in a desired direction with proper weighting of both EBV in total merit indices

Conclusion

For all studied traits in the Walloon Holstein dairy cattle:

- Genetic and non-genetic heterogeneity of residual variance
- Genetic variance in environmental sensitivity
 - → Selection feasible to change micro-environmental sensitivity
- Substantial contributions of non-genetic effects
 - → Interesting information for management purposes in terms of variation

Corresponding author's email: jvandenplas@ulg.ac.be

Study supported by:

- **Public Service of Wallonia (SPW-DGARNE;** project D31-1273)
- **European Commission, Directorate-General** for Agriculture and Rural Development, under **Grant Agreement 211708 (project Robustmilk)**

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

ILK= www.robustmilk.eu