

63rd EAAP Annual Meeting 2012 August 27-31, Bratislava, Slovakia

Genetics of the mid-infrared predicted lactoferrin content in milk of dairy cows

Catherine Bastin^{1*}, G. Leclercq ¹, H. Soyeurt ^{1,2}, and N. Gengler ¹

Gembloux Agro-Bio Tech, University of Liège (GxABT, ULg) Gembloux, Belgium
 National Fund for Scientific Research (FRS-FNRS) – Brussels, Belgium

www.robustmilk.eu

Bovine lactoferrin

- Lactoferrin = iron-binding glycoprotein present in milk
- Important host defence molecule:
 - □ antimicrobial/antiviral, antioxidant, immunomodulatory activities
 - > role in the defence mechanisms in the mammary gland
- Used as a food additive:
 - beneficial effects of the oral administration of lactoferrin on the health of humans and animals
 - □ e.g. in humans: cancer protection
 - □ e.g. in animals: lactoferrin + penicillin → // antibacterial activity against S. aureus

Genetic selection for lactoferrin?

Measurable

Prediction by mid-infrared spectrometry

- $R^2_{cv} = 0.71$; $R^2_{v} = 0.60$; RPD = 1.86
- **indicator" of lactoferrin content in milk

 Soyeurt et al., 2012, Anim.

Economically interesting

- Nutraceutical properties of milk
- > Defence mechanisms in the mammary gland

Variable and heritable

Objectives

Measurable

Economically interesting

Variable and heritable

Objectives:

- genetic variability of the mid-infrared prediction of lactoferrin content in milk
- genetic correlations with
 - major production traits
 - udder health trait
 - fatty acid contents in milk

Data and edits

- Mid-infrared prediction of
 - lactoferrin content in milk (MIR-LF; mg/L)
 - content in milk of 10 individual and 7 groups of fatty acids (FA; g/dL)
- After edits (and random selection of herds):
 - 9,878 first-parity Holstein cows from 150 Walloon herds
 - > 88,000 records for milk, fat, and protein traits
 - > 85,000 records for somatic cell score (SCS)
 - > 61,000 records for FA and MIR-LF traits

Data: MIR-LF

- ightharpoonup Average MIR-LF = 162.81 ± 68.76 mg/L CV=42%
- Average MIR-LF across days in milk:

Correlations among observations

Correlations among observations at the same day

Correlations between MIR-LF and:		
Milk (kg)	-0.42	
Fat (kg)	-0.24	
Protein (kg)	-0.22	
Fat (%)	0.31	
Protein (%)	0.59	
Somatic cell score	0.30	

Correlations between MIR-LF and the groups of FA (g/dL of milk):			
Saturated 0.30			
Monounsaturated 0.17			
Polyunsaturated 0.15			
Short chain 0.23			
Medium chain 0.36			
Long chain 0.06			

Model

23 two-trait random regression test-day models

$$y = X\beta + Q (Zp + Za) + e$$

- β = fixed effects
 - herd x test day
 - lactation stage (classes of 5 days)
 - gestation stage
 - age at calving x season of calving x lactation stage
- p = permanent environmental random effect
 - a = additive genetic random effect
 - > regression curves modelled with 2nd order Legendre polynomials
- Variance components estimated using AIREMLF90 (Misztal, 2012)

MIR-LF heritability

Correlations with production

Average daily genetic correlation with MIR-LF (SE = 0.06 - 0.08)

Milk (kg)	Fat (kg)	Protein (kg)	Fat (%)	Protein (%)
-0.17	0.09	-0.01	0.30	0.39

Correlations with SCS

Correlations with fatty acids

Average daily genetic correlation with MIR-LF (SE = 0.06 - 0.08)

Individual FA (g/dL of milk)		
C4:0	0.14	
C6:0	0.21	
C8:0	0.25	
C10:0	0.27	
C12:0	0.31	
C14:0	0.31	
C16:0	0.33	
C17:0	0.32	
C18:0	0.04	
C18:1 cis-9	0.20	

Groups of FA (g/dL of milk)		
Saturated	0.28	
Monunsaturated	0.27	
Polyunsaturated	0.31	
Unsaturated	0.27	
Short chain	0.24	
Medium chain	0.34	
Long chain	0.17	

Genetic selection for lactoferrin?

Measurable

- ✓ Higher MIR-LF desirable
- ✓ Interest as a biologically active food component

Economically interesting

- Nutraceutical properties of milk
- > Defence mechanisms in the mammary gland

Variable and heritable

✓ Higher or lower MIR-LF desirable?

Genetic selection for lactoferrin?

Measurable

- ✓ Higher MIR-LF desirable
- ✓ Interest as a biologically active food component

Economically interesting

- Nutraceutical properties of milk
- > Defence mechanisms in the mammary gland

Variable and heritable

✓ Higher or lower MIR-LF desirable?

Generally: lactoferrin level in mastitic milk >>> normal milk

- Mastitis and MIR-LF data from 26 Walloon herds since 2010
- 1497 lactations (of which 446 with mastitis) with at least 3 MIR-LF records

Generally: lactoferrin level in mastitic milk >>> normal milk

	N	Average MIR-LF over the lactation	
		Mean	SD
Non mastitic cows	1051	197.2	63.9
Mastitic cows	446	208.3	60.9

- Mastitis and MIR-LF data from 26 Walloon herds since 2010
- 1497 lactations (of which 446 with mastitis) with at least 3 MIR-LF records

Generally: lactoferrin level in mastitic milk >>> normal milk

	N	Average MIR-LF over the lactation	
		Mean	SD
Non mastitic cows	1051	197.2	63.9
Mastitic cows	446	208.3	60.9

Significantly higher for mastitic cow

- Mastitis and MIR-LF data from 26 Walloon herds since 2010
- 1497 lactations (of which 446 with mastitis) with at least 3 MIR-LF records

- Generally: lactoferrin level in mastitic milk >>> normal milk
- But lactoferrin in mastitic milk varies according to the pathogen and the pathogenicity of the bacteria.
 - e.g. acute >< peracute mastitis caused by *E. coli*
- Sufficient level of lactoferrin necessary to prevent certain infections
 - Threshold of 200 mg/l to inhibit the growth of E. coli.

Kawai et al., 1999, Vet. Res. Commun. Hagiwara et al., 2003, J. Vet. Med. Sci. Lee et al., 2004, J. Vet. Med. Sci.

- Generally: lactoferrin level in mastitic milk >>> normal milk
- But lactoferrin in mastitic milk varies according to the pathogen and the pathogenicity of the bacteria.
 - e.g. acute >< peracute mastitis caused by *E. coli*
- Sufficient level of lactoferrin necessary to prevent certain infections
 - Threshold of 200 mg/l to inhibit the growth of E. coli.
 - ✓ lactoferrin = optimum trait
 - ✓ higher level: ability of the cow to fight infections vs. occurrence of mastitis
 - ✓ joint selection for improved SCS and mastitis resistance required

Conclusions

- > The mid-infrared prediction of lactoferrin
 - = indicator of lactoferrin content in milk
 - variable and heritable especially in mid to late lactation
 - · low and negative genetic correlation with milk yield
 - positive genetic correlations with fat, protein and fatty acid contents
- Selection for improved MIR-LF feasible
 - "nutraceutical properties of milk index"
 - "udder health index"

Corresponding author's email: catherine.bastin@ulg.ac.be

Study supported by:

- Public Service of Wallonia (SPW-DGO 3; project D31-1273)
- LAECEA project for providing mastitis data
- European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk)

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

www.robustmilk.eu