Supplementation of neonatal calves with fatty acids: nutritional modulation of the immune response

C.A. Kentler, B.B. Babatunde and T.L. Frankel Department of Agricultural Sciences La Trobe University Bundoora, Victoria, 3086 Australia

The Australian Dairy Industry

- Pasture based, seasonal calving
 Average herd size: 220 head (70% Friesian Holstein)
- Cows calve outside
- Calves reared in groups in outdoor sheds

Neonatal Calf Mortality

- Most susceptible to disease from birth to weaning
 - Neonatal mortality 2-10% in Australian herds
- Most common cause of death and disease in Australian herds diarrhoea
 - Crypotosporidium parvuum, E. coli,
 Salmonella sp., Corona virus and Rotavirus

Peyer's Patches (PPs) and Serum IgG

PPs dynamic innate immune structures in small intestine

- Provide first line of defence
- Produce B cells for acquired immunity

Serum IgG indicates effectiveness of passive transfer and development of acquired immunity

Nutritional Modulation

- Evidence suggests PP morphology can be altered by nutritional supplementation
- Nutritional support may assist in development of immunity
 - Stimulating mucosal growth/increasing innate response
 - Boosting/supporting immune response

Fatty Acid Supplementation

24 Friesian Holstein bull calves

Treatments:
- CO: CMR only (10% LW)
- SU: CMR + 5% sunflower oil
- PF: CMR + 5% palm shortening
- Twice daily hand-feeding from 3-5 to 13-14 days of age

Sample Collection

- Blood samples taken at 3-5, 10 and 12 13 days of age
 - Serum removed; analysed by conjugate ELISA
 - Calves euthanised at 13-14 days of age

Morphology: Jejunal PP

Villi

Interfollicular area

Morphology: Ileal PP

Villi

Interfollicular Area

Follicle

Morphology of JPPs

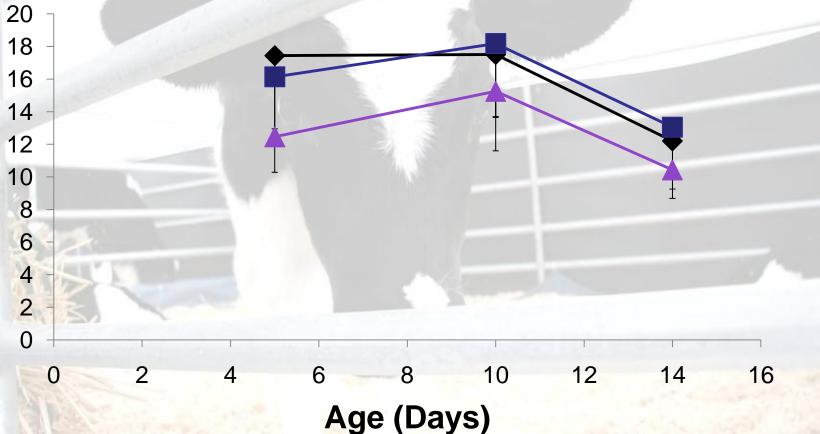
Treatment	IFA	VA	VH	VC
Group	(x 10 ³ µm²)	(x 10 ³ µm ²)	(µm)	(µm)
CO (N = 8)	57.3	153.2	737.1	2096.1
SU (N = 7)	45.0	158.5	772.0	2145.0
PF (N = 7)	47.5	155.6	770.0	2097.1

Morphology of JPPs

Treatment	FA	FH (µm)	
Group	(x 10 ³ µm ²)		
CO (N = 8)	99.0 ^{ac}	278.5 ^{ac}	
SU (N = 7)	116.2 ^{ab}	320.9 ^{ab}	
PF (N = 7)	76.8 ^c	240.9 ^c	

Different letters indicate significant differences; p < 0.05

Morphology of IPPs


Treatment	VA	VH	VC
Group	(x 10 ³ µm²)	(µm)	(µm)
CO (N = 8)	128.7	601.1	1925.5
SU (N = 8)	132.0	600.6	1917.3
PF (N = 8)	137.9	606.0	1914.9

Morphology of IPPs

Treatment	FA	FH	IFA	
Group	(x 10 ³ µm ²)	(µm)	(x 10 ³ µm ²)	
CO (N = 8)	256.8	626.2	28.7	
SU (N = 8)	249.7	671.9	37.4	
PF (N = 8)	219.2	574.9	38.5	

Serum IgG Concentration

CO ■SU ▲PF

CONCLUSIONS

- Supplementation with 5% SU or 5% PF:
- Influences follicular morphology of JPPs (unsaturated vs saturated)
- Does not influence IPP morphology
- Does not influence serum IgG concentration
- Does not influence morbidity outcomes

FINALLY...

- What is the relationship between follicle size, immune cell proliferation, PP gross morphology and long term health outcomes?
- Understanding vital to:
 - Improving feed formulation
 - Decreasing calf mortality and morbidity
 - Increasing economic return

Acknowledgements

- Meat and Livestock Australia
- Gardiner Foundation
- CopRice
- Dr Theresa Frankel, (Dr) Buki Babatunde, Ms Diana Rayment and Mr Robert Evans (La Trobe University)

 Mr Jack Laidlaw and the Department of Primary Industries (Vic) Ellinbank Dairy Staff

UNDATION