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Consider evolution of genetic
evaluation methods

e we (animal breeders) like generality
 Animal populations (particularly ruminants) are complex:

pedigree loops overlapping generations,
culling heterogeneous information

e For this, popular methods consider all data
simultaneously

All relationships (A & A1) Environmental factors (BLUP)

All records (test-day, repeatability models)
| mean, all records
(decades of records, avoiding bias due to selection)

All traits - missing data Unknown parent groups




Consider evolution of genetic
evaluation methods

Computing was made simpler with more powerful
computers, but

— once a coherent & elegant framework is established, (almost)
everything is feasible

— smart people are much more important than brutal force

Inversion of A

Iteration on data

Sparse matrices

Approximate/iterative methods for reliabilities




Consider evolution of genomic
evaluation methods

* Very fast use of powerful algorithms
— Gauss-Seidel with Residual Update, PCG
— Lasso / Elastic Net
— EM

 Inclusion of pedigree & fixed effects
e records?




Single Step as a missing data
problem

Methods for genomic evaluation lack of a general way of
using traits recorded in relatives
— If relatives do not have genotype of their own

We can see genotype as a missing data problem
(Christensen & Lund, 2010)

« Genotype » :

— at the SNPs

— at multiallelic markers (haplotypes)

— at the genes/QTLs themselves

the following derivations are very general




Missing data

Fill-in missing data: data augmentation

« data augmentation refers to a scheme of augmenting the observed
data so as to make it more easy to analyze » (Tanner & Wong,
1987)

— Two flavors: EM and Bayesian (Posterior distributions)
Augmenting = imputation

In both flavors (EM and Bayesian), the joint distribution
of the imputations needs to be considered

Consider for instance a very far ancestor

— Its predicted genotype will be the highest of (p?,2pq,q?)

— But actually its distribution is « AA, Aa, aa » with Pr = (p2,2pq,d?)
« Using a point estimator is a poor solution



(Joint) Uncertainty

 Consider a cow daughter of a genotyped bull
m| (72
AA with Prob p
@ Aa with Prob g
e Consider the parents of two genotyped bulls

5o @ AA - Aa
Aa — AA
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Imputation

Long-range imputation, linkage-based imputation,
peeling, etc
These are the most exact forms of imputation and work

well for 1 or 2 generations or if a subset of markers is
genotyped, but...

Most often one imputation is the result

Very hard to come up with the distribution of the
Imputations
— This is in principle feasible by sampling (but very long)




Linear form of imputation

In the linear world everything is simpler
« Consider gene content at a locus
g ={0,1,2 for aa,aA,AA}
e Consider two individuals 1 and |
* The basic identity is (Falconer; Cockerham, 1969):.
— Cov(g;,g;) = Pr(IBD)2pq
« (Can we predict gene content of | from gene content of i ?




Understanding covariance of gene

content

To each one of the 2M founder alleles
we assign a tag g saying if the allele oo o6

IS A (g=1) or a (g=0) with probability p

and gq=1-p |7 r“'_‘ P kit
What is the covariance \ i
between g, and gq ? 'ﬁ' .

9 might inherit alleles from 1

— With probability Pr(IBD) between 1 -
and 9

9 might inherit alleles from 4

— With probability Pr(IBD) between 4
and 9

...and so on

@
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Linear form of imputation

Therefore we can predict gene content of | from gene content of i
— And its distribution (uncertainty)

g, = E(gj |gi) =2p+A,A%(9 -2p)

\Var (g,- |gi) _ (A11+A12A—212A 2]) 2pq @s IS simple selection mdexj
machinery

This is an approximation: linkage & mendelian rules (incompatibilities) are
not used

— But the same approximation is done working with pseudo-data (DYD’s)
— For individuals far away, the linear approximation is very good

The same expression works for linear functions of gene contents (i.e.
breeding values)

— This is why Legarra et al. (2009) and Christensen & Lund (2010) arrive to the
same expression
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Joint distributions

« Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

The assumption of normality of the distributions
implies no major genes... as in pedigree BLUP
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Joint distributions

« Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

Unconditional distribution of genetic values of Genotyped individuals

p(u,) =N(0,Go;) ano

The assumption of normality of the distributions
implies no major genes... as in pedigree BLUP
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Joint distributions

« Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

Unconditional distribution of genetic values of Genotyped individuals
p(u,) =N(0,Go;) ano

Conditional distribution of Non-Genotyped individuals

p(uyfu,) =N(AA,A .00 -A ATA g7)

The assumption of normality of the distributions
implies no major genes... as in pedigree BLUP
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Joint distributions

« Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

Unconditional distribution of genetic values of Genotyped individuals
p(u,) =N(0,Go;) ano

Conditional distribution of Non-Genotyped individuals

p(uyfu,) =N(AA,A .00 -A ATA g7)

p(uy,u,) = p(u,) p(u,u 2){Joint distribution

The assumption of normality of the distributions
implies no major genes... as in pedigree BLUP
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For BLUP: only covariances are needed

=>Model in one step (Single Step GBLUP)

Aguilar et al., 2010; Christensen & Lund, 2010

u H, H
Var 1j:H:|: 11 12i|: , g
[uz H 21 H 22 o giliype
A11+A12A_212(G —A 22)’6‘_21 21 A 1‘26‘_];[:‘
GAA,, G
e Incredibly: H- is very simple: v
genotyped

0 0
H'=A"+
0 G'-A7
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Single step GBLUP

W: incidence matrix of all
animals on all data

X'R™X X'R™W b
WR™X WR™W +H g ?||{

_| XR7y
WR™y

G

ﬁs- G is any matrix describing )

« genomic » covariances of
breeding values;

it does not restrict to VanRaden’s

\(2008) GBLUP -

H*=A"+[0
0 G™

A: pedigree
relationship matrix

A, pedigree matrix among
genotyped individuals
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Single Step Bayes?

e G can be (pre) computed by some method (BayesB,
Bayesian Lasso, etc.) to be plugged in:
— TABLUP (Zhang et al. 2010), HetVarGBLUP (Legarra et al. 2011)

* In principle, one can extend the Single Step to non-
linear (Bayesian) models

 Monte Carlo SingleStep BayesB:

do 1 =1, niter {©1=E(gllgz)=2p+A1ﬁ‘§zgz

sanpl e m ssing genotypes from .
Var (9, 19,) = (A + AL ATA ,) 20

a=at+BayesB(al |l genotypes, all Yy)
enddo

a=a/ niter
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Computing stuff

« Working with Gt and A,,?, is a challenge. Because cost of inversion
IS cubic, this is tenable for < 100,000 genotypes

— See Aguilar et al. 2011 for details

 However, most modern iteration on data methods (Jacobi, PCG)
solve Cx=b by computing repeteadly Cx.

 We know how to do this (very) efficiently for

/( lteration on data }
[X’Rlx X'R™W }[6}_{”{1@

WR™X WR™W +A g2
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Computing stuff

« Working with Gt and A,,?, is a challenge. Because cost of inversion
IS cubic, this is tenable for < 100,000 genotypes

— See Aguilar et al. 2011 for details

 However, most modern iteration on data methods (Jacobi, PCG)
solve Cx=b by computing repeteadly Cx.

 We know how to do this (very) efficiently for

/( lteration on data }
X'R7X X'R™W X R‘ly

A 4

WRZIX WR™W +A g2 WR y @GX/Z(D(Z’X)) |

» We also know how to compute (very) efficiently Gx and A,,x|but not G-1x or
A, X

Two possible solutions follow: y Colleau’s (2002)
gorlthm
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Extended MME

Or the unsymmetric equations
[ X'R™X X R™W, X'R™W, 0 0
WlR‘lx1 WiR‘1W1+A“Ju‘2 W'lR"VV2+A 1%7; 2
W,R™X, W;R‘1W1+A210'u'2 WR W, +A z%u' 2
0 0 g’

0 0

For a total number of operations O(n)+O(mp)
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X'R™*X

1- Extended MME

X'R™W

b| [ XRYy] Hi=A"+

WR™ WR™W+H g ?||0| |WRY
* |s equivalent to
[ X'R™X X R™W, X'R™W, 0
WR™X, WR™W,+A'%? WR W, +A'g;? 0
W,R™X, WR™W, +A%*g? WR W, +A%0;* l0,°

0 0 lo? A,07°
0 0 -l1o.? 0

For a total number of operations O(n)+O(mp)

{O

0
0

-lg; ?

0

-Go?

u

0

0 G‘l—A;J

>
NC r—\c> o

<> S

(X'R7Yy |
WR™y
W,R™y

_asin regular BLUP g/\

S in any genomic evaluation |
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Extended MME

n -1
X'R™X X'R™'W P X,R_ly H*=A"+[0 0
-1 -1 ol [T WRTY 1 A-L
WR™X WR™W +H0?| . g 0 G*-Aj
U2 WZR y

e Has the same solution as

[ X'R7IX X'R™W, X R™W, 0 0 |[b] [XRY]
WR™X, WR™W, +A'%? WR W, +A'Dg ?] O 0 a,| |WR™y
W,R™X, WR'W,+A%0 )\ WR W, +A% % lo’® -log |0, |=|W.R™Y
0 0 o ? Ao 0 o| |0
0 0 1077 o N\-GaZ| 3] |0 |

rJ Separate the two blocks of equations
Genomic stuff |

\ Regular BLUP
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2- DUCrocqg’s «regarra) Iterative system
(Interbull meeting)

o -1
X'R™X X'R™'W P X,R_ly H*=A"+[0 0
WRIX  WRW +H 2| B [T MR Y 0 G*'-A}
u _02 WéR_ly 22
: : RHS correction for
e Can be solved iterating on|_"egular MME

X'R™X X R™W,

X' R™W, b
1: | WR™, WR™W,+AY5;> WR W, +A% ?||0/|=|WR™ ¥
W,R™X, WIR™W, +A%0;? WR W, +A%7;°

2: Gy=-0, Deviations due
genomics

ﬂ

~

3: Agp=-U,

Avoid double
counting of
relationships

XKLL
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genomic information

X'R7Yy

[y

(WR Y+, 7-9)

(@)
N

For a total number of operations O(n)+O(mp)

\ as in regular BLUP{

| asin any genomic evaluation

Similar schemes can iterate over pedigree 24
BLUP and SNP effects




Compatibility of G and A

G and A need to be on the same scale (same base population,
same genetic variance)

— Large deviations of HW (e.g. in crossbreds) make theory inadequate

— Solution: build A and G according to a crossbred theory (Lo et al.,
1993; Harris & Johnson 2010)

— More work needs to be done
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Compatibility of G and A

More generally: allelic frequencies (p) in the base population are
unknown

— This is not serious if there is no selection or data files are large
(dairy)

— In presence of (old) selection, deviations of both genetic base and
genetic variance will exist (Chen et al., 2011; Vitezica et al. 2011; this congress)

Correction through Wright's Fst (Powell et al; 2010):
— matches « new » and « old » populations

— considers both change of base and reduction in variance

G :(1—%)6 +11a

a=mean(A,, - G)




Bias & inflation

« Genomic predictions in dairy seem to be inflated (biased)
(e.g. Aguilar et al. 2011)

— The problem exists also for pedigree-based BLUP
« even in simulations (Vitezica et al., 2011)

— Seems to be alleviated (to some extent) by playing with weights
of Gand A,,

— Too odd to be luck...

 Is there anything wrong with basic theory?
— Certainly unrelated base populations are a fallacy

27




Why Single Step

 Generality
e DYD’s are difficult...

e for maternal traits,

» species with some phenotypes recorded on candidates (beef,
swine)

« small progeny numbers (sheep)

— weighting DYD for complex traits (i.e. RR models) is
difficult (multivariate equivalent of edc’s)

e Consider DuUcrocq’s «Legara) Iterative system

28




Two-step vs. Single Step
we-based BLUP’

[ X'R7IX X R™W, XRW, [[b] [XRY
1: | WR™, WR™W,+AY%? WR W, +A%;?| g, |=|WR Y
W,R™X, WR™W,+A%0> WR W,+A%;%|a, | |[WRY + 02 (7-9)

2: Gy=-0, </ ~pyDp's | /

No need for weights because

3: ALp=-0, correction for double| - MME and the iterative
counting process take care of them

The Single Step can be seen as an iterated
« DYD + genomic evaluation » system

%3)»
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9905t
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Why single step

Patry & Ducrocq (2011a) showed that bias will plague national
evaluations if selection is based on genomic proofs

— No way of including this in pedigree-BLUP except using pseudo-
data in the RHS (Patry & Ducrocq 2011Db)

— which is what the Single Step does in an exact manner

GWAS/estimation of SNP effects can still be done: easy jump
between Single Step and SNP effects (strandén and Garrick, 2009)

a=DZ'G™

EBV’s
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Take-home message

Single Step Is simpler than it seems
— Computationally feasible

Slightly more complex than national pedigree-BLUP

Compatibility problems solved

When not to use it?
— |If everybody is genotyped (and with no selective genotyping !)
— If somebody comes with a « super-peeling like » algorithm:

using long-range phasing,

Mendelian coherence,

imputing all individuals in a pedigree and

considering uncertainty in the « data augmentation » procedure
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