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@ Challenge when subpopulations are included in the learning
sample (reference population)(Goddard and Hayes, 2009;
Hayes et al., 2009; Ibafiez-Escriche et al., 2009; Toosi et al.,
2010)

- multi-breed/line
- multi-environment
- across-country
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@ Possible consequences

o false positives

e mathematical artifacts

e over-estimation of SNP effects
o degraded predictive ability
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@ Propose a non-parametric model considering performance in
each sub-population as a different trait

@ Comparison with a single trait model trained in only one
sub-population (Bayesian LASSO)
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Crossbred (yX)

DATA (provided by Genus-PIC)

@ Progeny adjusted average: Total piglets born in purebred (yP) and
crosbred (yX) matings (y* = y — Xp3)

e environmental effects: Farm-line-parity, Farm-year-Number
of services, Farm-month, age at first farrowing
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Number of records per line and trait

G

| A A B [B]
Data yP yX yp yX
Training | 2287 | 282 | 2340 | 317
Testing* | 63 20 | 354 | 78

*Only animals with progeny size >40 (line A) and >100 (line B)

@ Animals genotyped with PorcineSNP60 chip
- 50284 SNPs after editing
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@ Genome-wide prediction for total piglets born (in purebreds
and crossbreds)

e Bayesian LASSO (BL)

@ univariate for yP
o yP predicts yP and yX

e Multitrait reproducing Kernel Hilbert spaces (RKHSmulti)
regression

o extends RKHS to multitrait (yP and yX)
e yP predicts yP and yX
o yX predicts yX



Methods

Genomic
prediction in
subpopulations

o y=XB+Ko+e;
°oy= { Yp Vx } vector of observations of total piglets born
in each subpopulation

o 88% missing value for yX.

° Y7x = {YX0,Yxm}
o Data augmentation for missing yX: yx_ ~ N(XpB +Ka,R)
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o y=XB+Ka+e;

e population means as systematic effects f = (up tx)
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REHSmulte
o y=XpB+Ko+e;
e Ko = g(x) non-parametric function

o Kkernel matrix with elements {kj}; Gaussian kernel with

global allelic similarity
o o= { op Qx } vector of non-parametric coefficients for

each subpopulation (purebreds and crossbreds)




Methods

Genomic
prediction in
subpopulations

REKHSmulte

@ Prior distributions

B ~ U(—9999,9999)
62 Oop x
o a~N(0,K'®G), where G = { . 5 ]

GX,P 0')2(
o G~ IW
o2, 0
o e~ N(0,I®R), where R = P,
0 og,

o 02 ~ Scaled Inverse Chi?



Results

Correlations between purebreds and crossbreds from RKHSmulti

parameter

Phenotypic correlation 0.05 0.42
Genomic (NP) correlation | 0.42 (0.19) | 0.75 (0.11)

Residual variance (yP) 1.72 (0.07) | 0.90 (0.20)

Residual variance (yX) 2.34 (0.29) | 0.94 (0.04)

@ Forni et al. (2011) obtained additive correlations of 0.69
between pure and cross-bred total piglets born using BLUP
(pedigree)
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Predictive ability in Line A

RKHSmulti
Correlation: 0.50
MISE: 0.80

Bias: 0.50

Bayesian LASSO
Correlation: 0.55
MSE: 2.38
Bias: 0.38

w’iiF\’u rebred

RKHSmulti
Correlation: 0.45
MSE: 1.04

Bias: 0.48
Bayesian LASSO
Correlation: 0.41
MSE: 1.12

Bias: 0.58

RKHSmulti
Correlation: 0.30
MSE: 1.23

Bias: 0.57

“Crossbred (yX)
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Predictive ability in Line B

Genomic RKHSmulti
prediction in ; TR
subpopulations Correlation: 0.26
MSE: 0.45
Bias: 0.13

RKHSmulti Bayesian LASSO
Correlation: 0.05 Correlation: 0.22
MSE: 1.73 MSE: 1.06
Bias: 0.26 Bigs: 0.08

Purebred W‘

_ - ==~ RKHSmulti
e Correlation: -0.05
N MSE: 1.84
e Bias: 0.30
: - Bayesian LASSO
‘hh, s Correlation: -0.05
L MSE: 1.89

Crossbred (yX) Bias: 0.31
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@ Similar performance of RKHSmulti and BL in pure-bred
progeny

© RKHS showed slightly higher correlation in cross-bred
progeny in both lines, but with different strategy (need
uncertainty measurement of correlations).

© Slightly larger bias with RKHSmulti

© Promising behavior of RKHS in the cross-bred progeny, but
inconclusive results

@ Large proportion (88%) of missing data for yX

® No phenotypes of yX were used in BL (Multitrait model for
SNP regression models should be tested; Calus and
Veerkamp, 2011; Tsuruta et al., 2011)
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RKHSmulti allows estimating genomic correlation
non-parametrically

e Similar predictive ability of both methods for purebred
animals (better in line A)

Concluding @ Promising behavior of RKHS for multitrait analyses,
remarks
deserves further research.

@ Smaller proportion of missing record for yX may be more
conclusive
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o Kernel design study
e Multitrait-multi line analysis (yP_A, yP_B, yX_A, yX_B)
e include pedigree matrix

o Selection of SNPs (check SNP’s importance per line)

Concluding
remarks @ Genetic distance between subpopulations (Predicting
subpopulations with different genetic base may still be

unfeasible)
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