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Linear model

with epistatic effects

T T G C paternal chr.

C T A C maternal chr.

Y = 1µ + Xga + Dgd + e

gd ,1

ga,2 gd ,3

Model II regression: Xi ,j ∈ {−1, 0, 1} and Di ,j ∈ {0, 1, 0}
i = 1, . . . , n (observations), j = 1, . . . ,m (loci)

Y = 1µ + Xga + Dgd +
∑

s∈{aa,ad ,da,dd}
Wsgs + e (M-epi)

(M-dom)
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Reparameterisation of X and D

Requirements
1 at different loci:

main genetic effects independently distributed

2 at one locus j ∈ {1, . . . ,m}:
uncorrelated genotypic effects Cov(Xi ,jga,j ,Di ,jgd ,j) = 0

Orthogonalisation method

use genotype probabilities∗

additional standardisation for numerical stability

∗[Alvarez-Castro & Carlborg, 2007]

5



2

S
tatistical

m
o

delling
Bayesian solver

Gold standard: MCMC method BayesB∗

Ü high computing time (even for additive effects)

W
h

at

about epistasis?

Now: approximative Bayesian approach fBayesB†

iterative procedure

developed under pure additivity

extended to non-additive effects

∗[Meuwissen et al., 2001]
†[Meuwissen et al., 2009]
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Linear model in a Bayesian framework

Idea: one SNP effect at a time Y−j = Xj ,sgj ,s + e

For each type of genetic effect s ∈ {a, d , aa, ad , da, dd}
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Mixture of Laplace distribution and point mass at zero

x

f((x
))  ,

  γγ
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,  λλ
  =
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Prior distribution:

gs,j ∼ L∗(γs , λs)

Pr(gs,j = 0) = 1− γs

Var(gs,j) = γs
2

λ2
s

Posterior expectation:

ĝs,j = E (gs,j |Y = y−j)
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Simulation study

52 273 SNP markers on 30 Morgan

mutation-drift model
mutation rate 2.5 · 10−3 (DH = 0.33)∗

recombination events (LD = 0.12)∗

23 loci with main effects

optional: epistatic effects for 6 loci
pairs for each type of interaction

residual variance according to
broad-sense heritability H2 = 0.5

Ü every 10th marker (m = 5 227)
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∗DH degree of heterozygosity; LD linkage disequilibrium
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Average estimated variance components

Simulation without epistasis

σ2
a σ2

d σ2
aa σ2

ad σ2
da σ2

dd

(M-dom) BayesB 0.746 0.039 – – – –

(M-dom) fBayesB 0.742 0.035 – – – –

(M-epi) fBayesB 0.748 0.039 0.008 0.007 0.007 0.008

Simulated 0.757 0.040 – – – –

Simulation with epistasis
σ2
a σ2

d σ2
aa σ2

ad σ2
da σ2

dd

(M-dom) BayesB 1.324 0.176 – – – –

(M-dom) fBayesB 1.310 0.161 – – – –

(M-epi) fBayesB 1.338 0.193 0.299 0.138 0.065 0.057

Simulated 1.409 0.217 0.346 0.133 0.089 0.020
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Estimated genetic effects
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Accuracy of fBayesB

average correlation between simulated and predicted
genetic values∗, H2 = 0.5

0.95− 0.97 simulation without epistasis
0.74− 0.85 simulation with epistasis

decrease in accuracy about 5 % when H2 = 0.3

accuracy of breeding value prediction for selection
candidates (10 best) at high level∗ 0.93− 0.98

less computing time than BayesB: 1 sec vs. 4 h (M-dom)

. . . but
∗BayesB +1 %
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Discussion

1 Loss of accuracy for increasing # QTL or # markers

≤ 0.81 for 23 QTL and 52 273 markers
≤ 0.80 for 230 QTL and 5 227 markers
≤ 0.61 for 230 QTL and 52 273 markers

2 fBayesB sensitive in choice of hyper-parameter γs (M-epi)

cross validation for initialisation?
emBayesB∗

∗[Stepherd et al., 2010]
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Thanks for your attention!

Conclusions:

u fBayesB is convenient for genetic value prediction
including non-additive effects

d sensitive in the choice of hyper-parameter

This work is part of the FUGATO+ project BovIBI financed by the
Federal Ministry of Education and Research (BMBF).
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