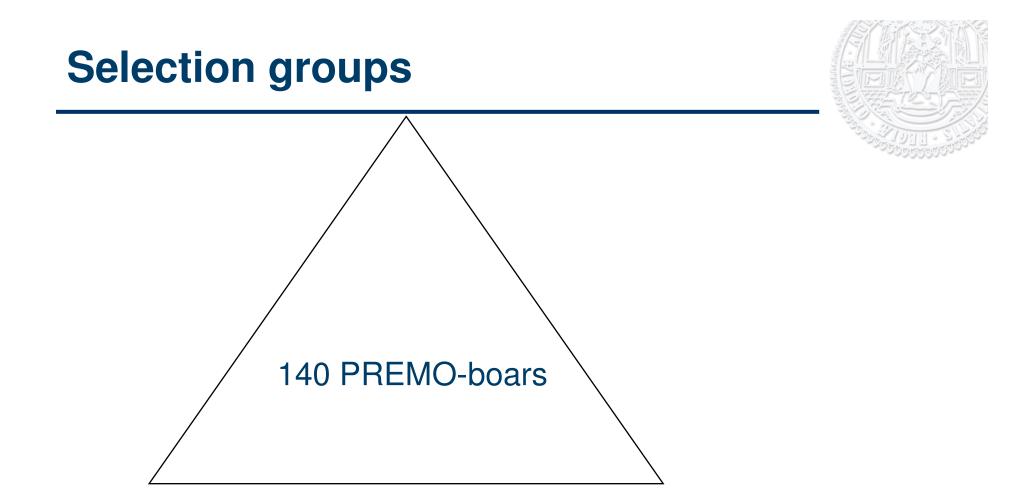
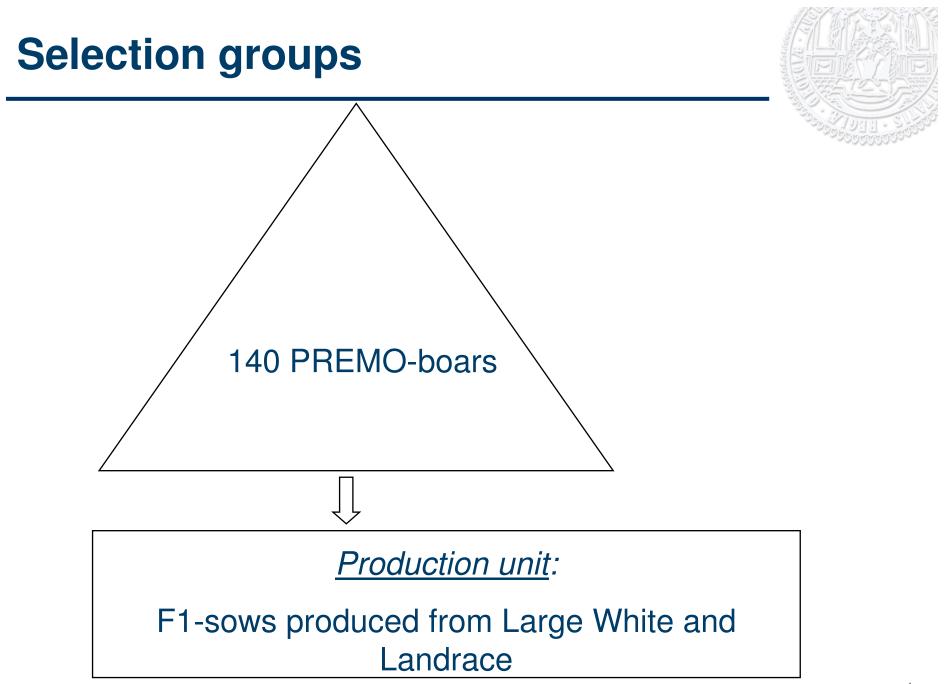
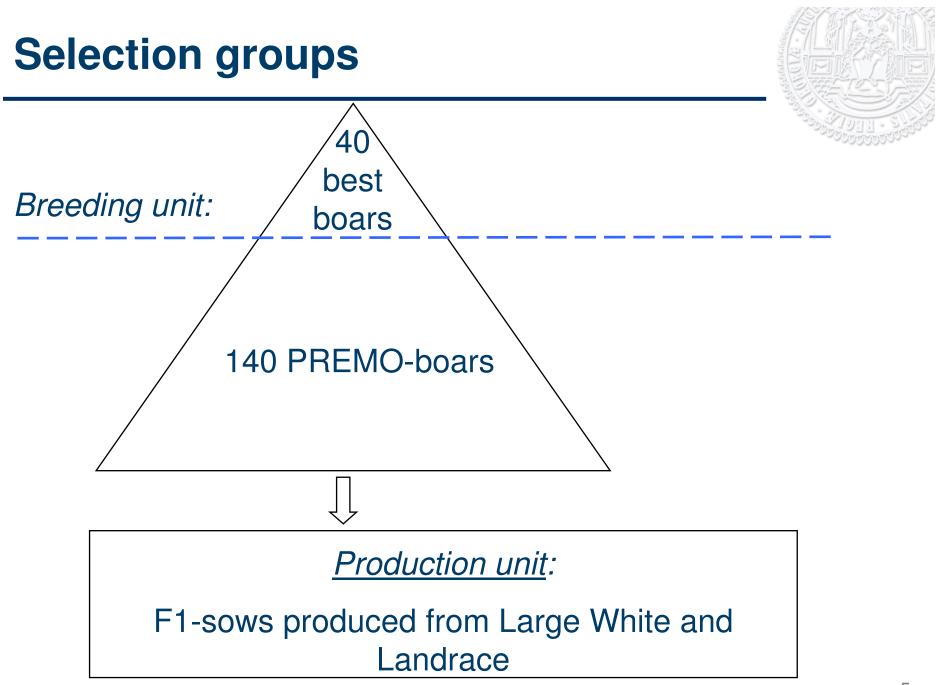
Evaluation of selection strategies including genomic breeding values in pigs

A.M. Haberland¹, F. Ytournel¹, H. Luther², H. Simianer¹

¹Department of Animal Sciences, Animal Breeding and Genetics Group, Georg-August-University Göttingen, Germany ²SUISAG, Allmend, Sempach, Switzerland






- Three-way crossbreeding scheme of the Swiss breeding association SUISAG
- terminal sire-line PREMO[®] (140 boars in AI)
- small breeding nucleus of 250 breeding sows
 → risk of inbreeding

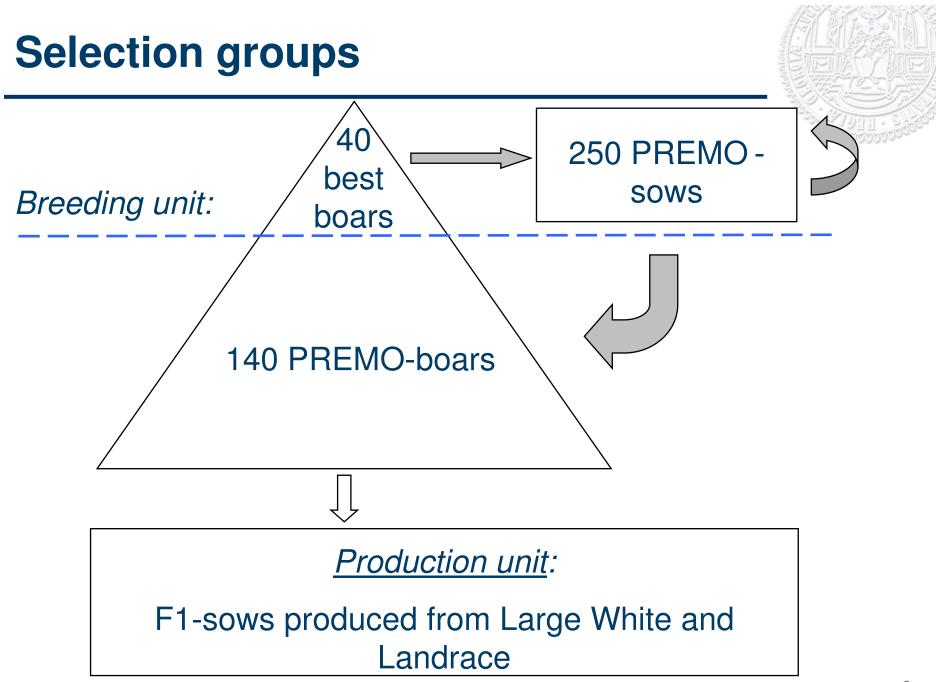


Foto: SUISAG

Introduction

- 40 young boars selected out of 1,200 candidates according to
 - -pedigree
 - own performance (daily gain, backfat thickness)
 - station test of two full sibs

(lean meat percentage, daily gain, feed conversion rate, fat quality, intramuscular fat, drip loss, pH_1 , pH_{30} , reflectance)

 \rightarrow low reliability of selection index (r² = 0.32)

Motivation

Can we increase the reliability of selection and the genetic gain transferred by the young boars by integrating information on genomic breeding values into the selection index?

8

- modeling of the population with ZPLAN+
- software ZPLAN+ is based on
 - selection index theory
 - gene-flow method
 - economic modeling
- deterministic calculation of output parameters (selection intensity, generation interval, accuracy of the index, discounted returns, genetic gain)

Modeling in ZPLAN+

Selection Group: BB_EL

Name	BB_EL
Gender	male 💌
Breed	PREMO+
Size	40
Number of proven animals	1200.0
Number of selected animals	40.0
Production unit	

Reproduction cycle	1.0
Productive lifetime	1.0
Age at first reproduction	1.0
Probability to remain after 1 year	1.0
Probability to remain after 2 years	1.0
Accuracy	0.0
Use for selection index	

Traits

Name	Ec. value	Herd	Heritability	Litter	σ(P)	Random	Repeatability	Repro.
AwF	2.8	0.0080	0.571	0.07	2.064	0.351	0.0	
DL	-3.0	0.0070	0.322	0.135	1.21	0.537	0.0	
Dummy	0.0	0.0	0.0010	0.0	1.0	0.0	0.0	
FQ	-1.0	0.018	0.328	0.083	1.533	0.571	0.0	
FV	-40.0	0.022	0.36	0.138	0.186	0.48	0.0	
H30	-3.5	0.0030	0.24	0.022	2.595	0.736	0.0	
ImF	9.75	0.0070	0.676	0.056	0.51	0.262	0.0	
LTZ	0.06	0.0	0.276	0.181	44.443	0.542	0.0	

• Assumption:

genomic breeding values (GEBVs) available for 10 traits of the breeding goal

How to consider this information in selection index?

definition of ,genomic traits' linked to their corresponding breeding goal traits via genetic correlation of 1

Heritability and reliability

	h ² con	r ²	h ² ₅₀₀	հ ² ₁₀₀₀
Lean Meat Percentage	0.57	0.71	0.26	0.41
Drip Loss	0.32	0.39	0.16	0.28
Fat Quality	0.33	0.48	0.19	0.32
Feed Conversion Rate	0.36	0.41	0.17	0.29
H30	0.24	0.36	0.15	0.27
Intramuscular Fat	0.68	0.44	0.18	0.31
Daily Gain_Field	0.28	0.42	0.17	0.30
Daily Gain_Station	0.25	0.38	0.16	0.28
pH1	0.20	0.27	0.12	0.21
Daily Gain_Carcass	0.34	0.47	0.19	0.32

$$h_N^2 = \frac{Nr^2}{Nr^2 + k}$$

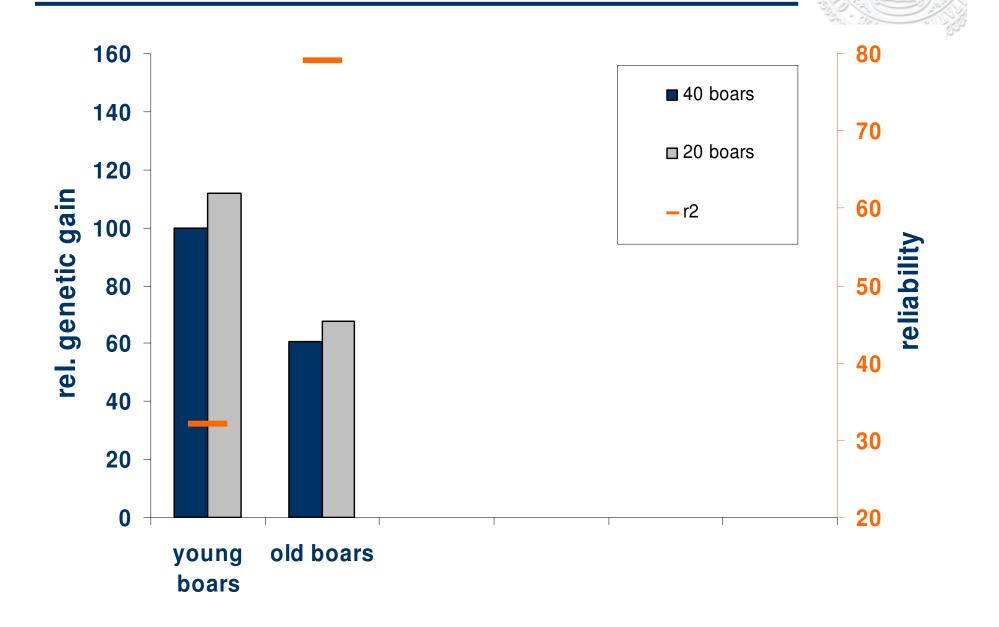
Daetwyler et al., 2008

Scenario	Index Sources
Young boars	Pedigree, field test, station test of 2 full sibs
Older boars	Station test of 6 progeny, 40 records of end-products (GI = 2.6 yrs)
GS_500	Genomic Breeding Value (N= 500)
convent. + GS_500	Pedigree, field test, station test of 2 full sibs and GEBV
GS_1000	Genomic Breeding Value (N= 1,000)
convent. + GS_1000	Pedigree, field test, station test of 2 full sibs and GEBV 13

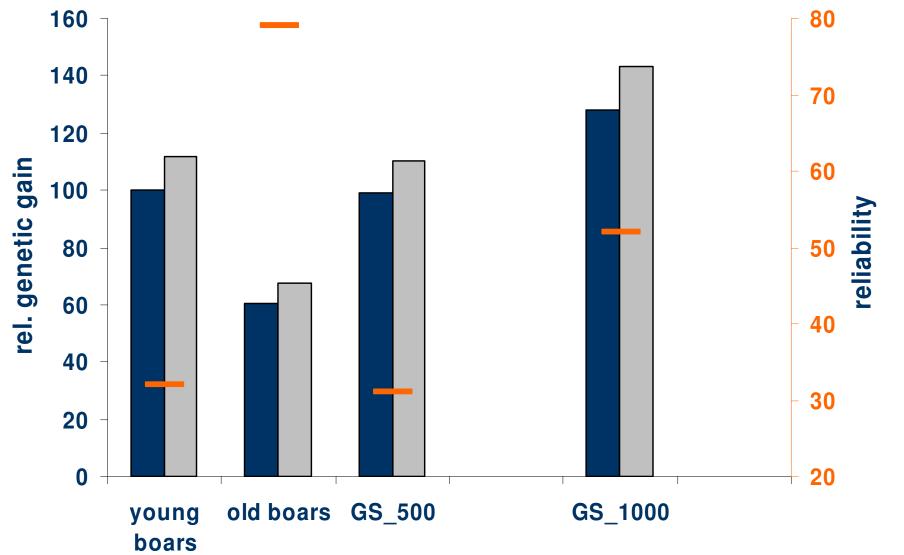
Scenario	Index Sources
Young boars	Pedigree, field test, station test of 2 full sibs
Older boars	Station test of 6 progeny, 40 records of end-products (GI = 2.6 yrs)
GS_500	Genomic Breeding Value (N= 500)
convent. + GS_500	Pedigree, field test, station test of 2 full sibs and GEBV
GS_1000	Genomic Breeding Value (N= 1,000)
convent. + GS_1000	Pedigree, field test, station test of 2 full sibs and GEBV 14

Scenario	Index Sources
Young boars	Pedigree, field test, station test of 2 full sibs
Older boars	Station test of 6 progeny, 40 records of end-products (GI = 2.6 yrs)
GS_500	Genomic Breeding Value (N= 500)
convent. + GS_500	<i>Pedigree, field test, station test of 2 full sibs and GEBV</i>
GS_1000	Genomic Breeding Value (N= 1,000)
convent. + GS_1000	Pedigree, field test, station test of 2 full sibs and GEBV 15

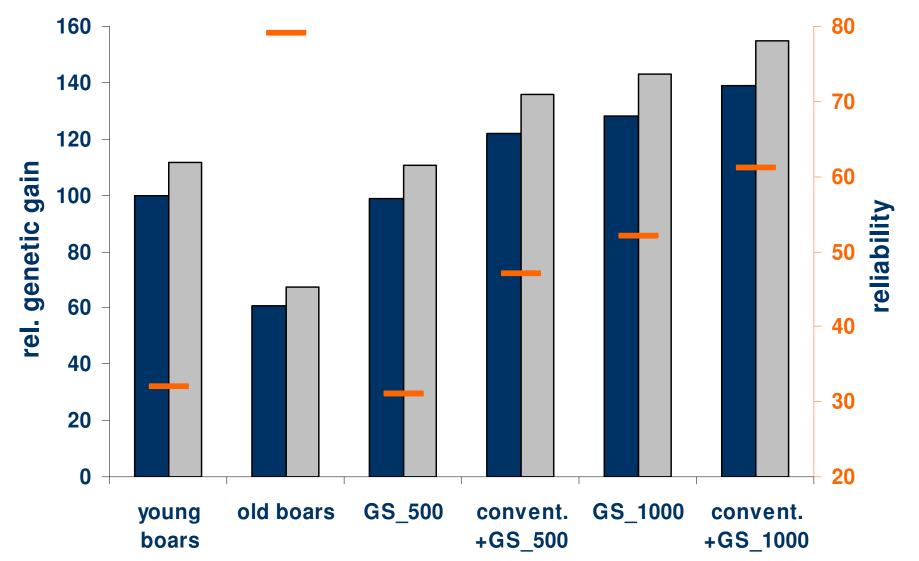
Scenario	Index Sources
Young boars	Pedigree, field test, station test of 2 full sibs
Older boars	Station test of 6 progeny, 40 records of end-products (GI = 2.6 yrs)
GS_500	Genomic Breeding Value (N= 500)
convent. + GS_500	<i>Pedigree, field test, station test of 2 full sibs and GEBV</i>
GS_1000	Genomic Breeding Value (N= 1,000)
convent. + GS_1000	Pedigree, field test, station test of 2 full sibs and GEBV 16



Scenario	Index Sources
Young boars	Pedigree, field test, station test of 2 full sibs
Older boars	Station test of 6 progeny, 40 records of end-products (GI = 2.6 yrs)
GS_500	Genomic Breeding Value (N= 500)
convent. + GS_500	Pedigree, field test, station test of 2 full sibs and GEBV
GS_1000	Genomic Breeding Value (N= 1,000)
convent. + GS_1000	Pedigree, field test, station test of 2 full sibs and GEBV 17


Scenario	Index Sources
Young boars	Pedigree, field test, station test of 2 full sibs
Older boars	Station test of 6 progeny, 40 records of end-products (GI = 2.6 yrs)
GS_500	Genomic Breeding Value (N= 500)
convent. + GS_500	Pedigree, field test, station test of 2 full sibs and GEBV
GS_1000	Genomic Breeding Value (N= 1,000)
convent. + GS_1000	Pedigree, field test, station test of 2 full sibs and GEBV 18

Results


Results

Results

Conclusions

 Young boars can be selected more accurately by integrating genomic information into the selection index

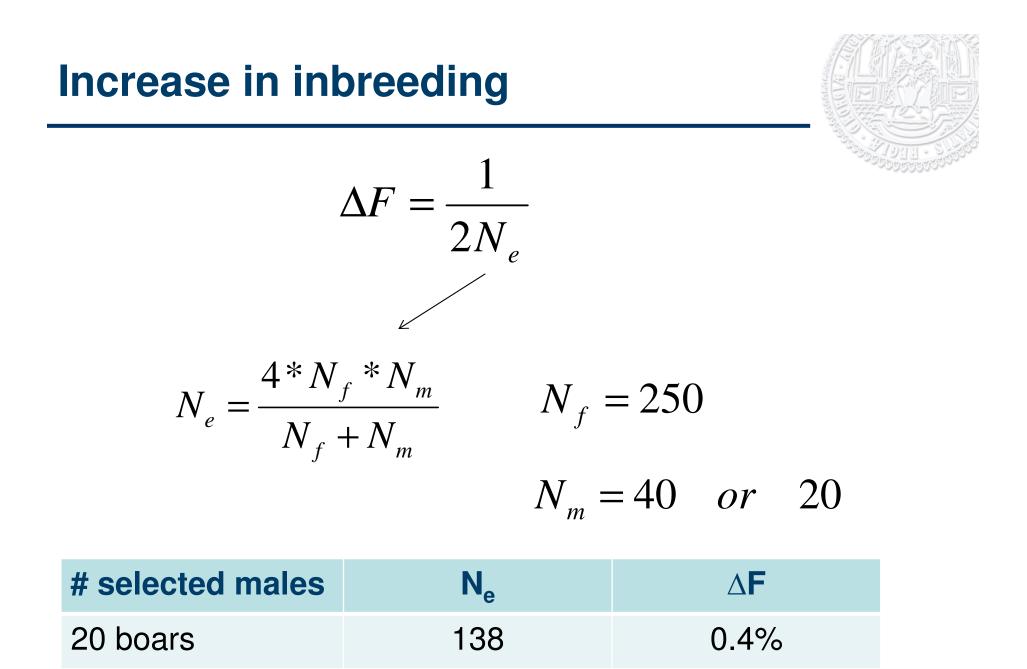
 $r^{2}_{(N=500)} = 47\%; r^{2}_{(N=1000)} = 61\%$ ($r^{2}_{conv} = 32\%$)

- Accurate estimation of GEBVs remains precondition
- Calibration set of 500 progeny-tested boars seems more realistic than 1,000 animals in calibration set

Thank you for your attention

Foto: Eimer

This study was part of the FUGATO *plus* brain project.


We thank our partners for financial support:

Bundesministerium für Bildung und Forschung

74

40 boars

0.7%

Results (genetic gain & reliability)

	40 boars	20 boars	CONTRACTORIA
Scenario	(of 1,200)	(of 1,200)	r² (%)
Young boars	11.5	12.8	32
Older boars	7.0	7.8	79
GS_500	11.4	12.7	31
convent. + GS_500	14.0	15.6	47
GS_1000	14.7	16.4	52
convent. + GS_1000	15.9	17.8	61