

Accuracy of genomic selection using multi breed reference populations

B. Gredler¹, J. Pryce², S. Bolormaa², C. Egger–Danner³, C. Fuerst³, R. Emmerling⁴, J. Sölkner¹, B. Hayes²

¹University of Natural Resources and Life Sciences Vienna ²Department of Primary Industries, Victoria ³ZuchtData EDV-Dienstleistungen GmbH ⁴Bavarian State Research Center for Agriculture

Introduction

- Accuracy of genomic breeding values (GEBVs) depends on the size of the reference population (e.g. VanRaden et al., 2008; Hayes et al., 2009)
- Assembling large reference populations is a major challenge for breeds with limited number of genotyped
- · Use prediction equation from one breed to predict GEBVs in other breeds or use multi-breed reference population to predict GEBVs

Objectives

- · To predict GEBVs for breeds not included in the reference population
- To predict GEBVs for single breed validation populations based on multi-breed reference populations

Populations

Australian Holstein bulls Reference: 755 bulls Validation: 386 bulls

Australian Jersey bulls Validation: 364 bulls

Austrian/German Fleckvieh bulls

Reference: 1,247 bulls Validation: 349 bulls

Genotypes

- All bulls were genotyped for 54,001 SNPs using the Illumina Bovine SNP50 Beadchip
- Quality checks within breeds
 - Call Rate, MAF, GC-Score, pedigree checking, ...
- · Genotypes of all breeds were merged according to SNPs present in all three breeds - 36,986 SNPs

Phenotypes

Daughter yield deviations for

- · Milk yield
- · Protein yield
- Fat yield
- Fertility
 - Australia: pregnancy within the first 42 days
 - Austria: 56 day non return rate in cows
- Daughter yield deviations were standardized to 0/1 within breed and corrected for breed

Methods

- GBLUP (Hayes and Goddard, 2008)
 - Genomic relationship matrix

$$y = 1_n \mu + Zg + e$$

- BayesA (Meuwissen et al., 2001)
 - Modified to include polygenic effect

$$y=1n'...+Xu+Zv+e$$

$$GEBV = \stackrel{\land}{v} + \stackrel{\land}{Xu}$$

• Accuracy of GEBVs = r(GEBV/EBV)

Scenarios		
Reference population	N-Reference	Validation population
Single breed		
Holstein	755	Holstein
Fleckvieh	1,247	
Multi-breed		Jersey
Holstein + Fleckvieh	2,002	Jersey
Holstein + Jersey	1,119	
Fleckvieh + Jersey	1,611	Fleckvieh
Holstein + Fleckvieh + Jersey	2,366	

Summary

- In general, BayesA was superior to GBLUP in GEBV predictions across breeds
- Addition of other breeds to the reference population had only small effects
- Accuracy of GEBVs using multi-breed reference populations was not greater than that achieved with single breed reference populations
- Populations are too divergent to capture marker-QTL associations across breeds at current marker density

7

Acknowledgements

ADHIS (Melbourne, Australia) provided phenotype data of Holstein and Jersey bulls

Federation of Austrian Fleckvieh Cattle Breeders (AGÖF) provided genotypes of Fleckvieh bulls

18