# Using test-day models for the estimation of breeding values for milk quality traits in Latxa sheep breed

E. Ugarte<sup>1</sup>. L. Afonso<sup>2</sup>; A. Goñi<sup>2</sup>

<sup>1</sup>NEIKER. Basque Institute for Agricultural Research and Development

<sup>2</sup>UPNA. Universidad Pública de Navarra





#### Introduction

- Latxa breeding program: EBV
  - Milk yield
  - Milk composition (fat and protein content)
- Milk yield
  - Total milking flock
  - All flocks
- Milk composition traits
  - Flocks with AC method
  - No samples at the beginning/ end of lactation
  - First and second parities
  - No all animals are evaluated



#### Introduction

- Moreover
  - Low heretabilities for fat content
  - Changes in genetic evaluations from year to year
  - Lactational models: average values
  - To assure good estimations: requirements
    - distribution into the lactation
    - number of controls
- As consequence: 30% of controlled lactations are refused
- Alternative: Use of test-day models
  - Use of total recorded controls



# Objective

- To analyze if the use of test-day models
  - Higher technical returns
    - higher number of animals (males and females)
  - Changes genetic evaluations
  - Changes in ranking



#### Material and methods

- First study
- Data proceeding of milk recording program 2008-2009
- Latxa Black faced of Navarra
- 974 first parity ewes
- 2574 milk composition records; 3475 milk yield records



#### Material and methods

- BLUP methodology (PEST)
- Animal models; Univariate models (milk composition)
- Lactational model

$$Y_{ijklmn} = \mu + HYM_i + A_j + NLL_k + ILFC_l + a_m + e_{ijklm}$$

Test-day model

$$Y_{ijklmn} = \mu + HCD_i + A_j + NLL_k + ILCd_l + pe_m + a_n + e_{ijklmn}$$



# Material and methods: h<sup>2</sup> (r)

|                   | Fat %          | Protein %      |  |
|-------------------|----------------|----------------|--|
| Lactational model | 0.14           | 0.38           |  |
| Test-day model    | 0.10<br>(0.23) | 0.30<br>(0.35) |  |



#### Material and methods

- Number of evaluated animals
- Pearson and Spearman correlations
  - Male/females
  - AI males
- Effect fixed estimations



# Results: technical report

|                           | Lactational model | Test-day model |
|---------------------------|-------------------|----------------|
| Evaluated animals (alive) | 28855 (8570)      | 29827 (8837)   |
| Nº evaluated males        | 425               | 425            |
| Nº evaluated females      | 8145              | 8412           |



## Results: correlations

|                   | Pearson |           | Spearman |           |
|-------------------|---------|-----------|----------|-----------|
|                   | Fat %   | Protein % | Fat %    | Protein % |
| Females with data | 0.74    | 0.69      | 0.73     | 0.73      |
| AI Males          | 0.86    | 0.83      | 0.77     | 0.77      |



## Results: fixed effects

|     |   | Lactational |           | Test-day |           |
|-----|---|-------------|-----------|----------|-----------|
|     |   | Fat %       | Protein % | Fat %    | Protein % |
| A   | 1 | 0           | 0         | 0        | 0         |
|     | 2 | -0.06       | 0.04      | -0.09    | 0.03      |
| NLL | 0 | 0           | 0         | 0        | 0         |
|     | 1 | -0.3        | -0.2      | -0.2     | -0.2      |
|     | 2 | -0.2        | -0.1      | -0.15    | -0.1      |



## Summary

- Higher number of data
  - same number of males
- Similar estimations of fixed effects
- Low correlations

Very conditioned by low number of data



#### So

- We don't have clear answer
- Are improving the model
  - All parities
  - Multivariate models
  - To combine different genetic evaluations
- New definition of objective selection
- Genetic evaluations for milk yield?
- Genomic selection?

