

Session 43
Jean-michel.astruc@toulouse.inra.fr

EAAP Annual Meeting 2010,

Heraklion, Crete Island (Greece)

23-27 August 2010

Genetic Improvement of Dairy Sheep in France: Results and Prospects

Jean-Michel Astruc,

Gilles Lagriffoul, Hélène Larroque, Francis Barillet

Sheep dairying in France

Roquefort area Lacaune breed 870,000 ewes

Corsica island

Western Pyrenean Manech (red and black faced) and Basco-Béarnais breeds 480,000 ewes

Dairy sheep breeding programs in France: historical elements

> 5 breeds - 5 programs

Dairy sheep breeding programs in France: tools and importance

Pyramidal organization of the population

Selection flocks (**nucleus**): official AC recording (same proportion whatever the breeds – around 20%)

Production flocks (**commercial**) : non official D method or non-recorded flocks

- > Extensive use of heat synchronization & AI: 625,000 AI (43% total ewes)
- Progeny-test and assortative matings:

Around 700 Al rams/year - differences between breeds

Dairy sheep breeding programs in France: tools and importance

	Breed	Lacaune	Red- faced Manech	Black- faced Manech	Basco- Béarnase	Corsican
	Size of the nucleus (AC recording)	174,000	71,000	15,000	22,000	21,000
Nucleus flocks	# AI progeny tested rams	445	130	36	52	31
	% AI in nucleus flocks	85	50	45	50	30
All flocks	Total number of Al with dairy rams	396,000	57,000	8,000	14,000	6,000

Selection objectives and selection criteria

Genetic parameters: comparison Lacaune (121,283 first lactations) et Red Manech (58,378 first lactations) breeds

	Heritability	Genetic correlation with milk yield
Milk Yield	0,32 / 0,33	
Fat content	0,41 / 0,28	- 0,43 / - 0,39
Protein content	0,51 / 0,51	- 0,48 / - 0,44
LSCS	0,15 / 0,10	0,15 / 0.21

Selection objectives and selection criteria

Genetic parameters: relation between production traits (MY) and udder traits (cells count & udder morphology) in the Lacaune breed.

	Milk yield	LSCS	Teat angle	Udder cleft	Udder depth
Milk yield	0,32	+0,15	+0,05	-0,00	-0,37
LSCS		0,15	+0,12	-0,21	-0,32
Teat angle			0,35	-0,34	-0,31
Udder cleft				0,32	+0,19
Udder depth					0,26

Selection objectives and selection criteria

Selection objectives in the Lacaune breed: more and more traits over time

Expected genetic gain in the Lacaune breed

Actual genetic gain of the selected traits

Milk yield (MY) & contents (F% & P%) for Lacaune rams

Birth year of the rams

EAAP Annual Meeting 2010, Heraklion, Crete Island (Greece), 23-27 August 2010

Actual genetic gain of the selected traits

Lacaune & Red Manech ewes : trend on milk yield, EBV and flock x year effect

Lacaune breed

Red Manech breed

Actual genetic gain of the selected traits

SCC & udder morphology for Lacaune ewes

Actual genetic gain of the selected traits: some key factors

	Al progeny- tested rams / year	% Al in the nucleus flocks	Average lactation in 2009 in liters	Annual genetic gain in milk yield for rams (1995-2007)
Lacaune	445	85	272	6.4 liters $(0.20\sigma_g)$
Red-Faced Manech	150	50	180	3.8 liters $(0.19\sigma_g)$
Black –Faced Manech	36	45	134	1.2 liters $(0.06\sigma_g)$

Diffusion of the genetic gain

Phenotypic evolution of milk yield in Lacaune breed: breeders of the nucleus versus out of the nucleus

EAAP Annual Meeting 2010, Heraklion, Crete Island (Greece), 23-27 August 2010

Diffusion of the genetic gain

Phenotypic evolution of P% in Lacaune breed : breeders of the nucleus versus out of the nucleus

PrP and Scrapie: a Gene Assisted Selection (GAS)

- ➤ 2001 : following BSE crisis national plan based on PrP genotyping to eradicate scrapie
 - ■Gene Assisted Selection: 160,000 over the last 10 years in dairy populations
 - ■Select for favorable ARR allele & eradicate unfavorable VRQ allele, while maintaining selection & genetic variability

> Implement specific tools

- Organize and optimize animals to be genotyped (young rams, dams, ewe lambs for replacement) according to the specificity of each breed
- Molecular information system, linked with the genetic information system
- Compute genotype predictions on relatives

Evolution of favorable ARR allele frequency in Lacaune and Red Manech breeds

Breed	ARR frequency			
	2001	2009		
	Initial	Progeny- tested rams	Natural mating rams in commercial flocks	
Lacaune	55	100	90	
Red-Faced Manech	17	100	50	

- > Dramatic increase of the ARR allele frequency in the selection flocks
- > Diffusion of the ARR allele in the commercial flocks

Impact of PrP selection on genetic trend

GENETIC TREND FOR MANECH RED FACED RAMS

Demand of breeders / industry / consumers : new traits to be selected = new phenotypes to measure

- New objective : nutritional and health value of milk (industry and consumer demand)
 - ➤ Milk fatty acid composition
- New objective : sustainable production system in accordance with both industry demand and decrease of milking labour
 - > Milk persistency and once daily milking ability
 - > Milk flow kinetics
- New objective : disease resistance and environment
 - Nematode resistance
 - + Longevity

A new step for the future : going further towards Genomics

A favorable and stimulating context

- ✓ January 2009 : Illumina Ovine SNP50 BeadChip available
- ✓ Recent developments on genomic selection & application in bovine : stimulation for French dairy sheep breeding organizations
- ✓ Efficient breeding schemes in dairy sheep with high number of AI progeny-tested rams
- ✓ Collection of DNA-samplings of Al-progeny-tested rams.

> Development of a strategy for using genomic tools

DNA-collection in dairy sheep

9,100 Al rams well known (progeny-tested) blood-sampled. DNA stored in Labogéna (year 2009)

Breeds	Number of Al progeny- tested rams with storage of DNA	Year of beginning of the DNA-storage
Lacaune	5961	1995
Red-Faced Manech	1940	1995
Black-Faced Manech	436	1995
Basco-Béarnaise	544	1995
Corsican	219	2003

Developed strategies in dairy sheep

Exploring 2 ways

QTL/gene detection and MAS/GAS

- Fine QTL mapping (towards MAS)
- Tracking causal mutation (towards GAS)

Genomic selection (GS)

- Large population breeds (training population higher than 1000 rams (Lacaune et MTR) (towards GS)
- Other breeds? Relevance and feasability of across-breed genomic estimation of breeding value?

Several on-going projects (2010-2013), with a strong implication (founding and decision) by breeding organizations

On-going projects on QTL/gene detection in dairy sheep

On-going	Purp	# genotypings	
project	QTL & gene detection	Genomic selection	(SNP50 Beadchip)
SheepSNPQTL	X	X	1,000
PhenoFinLait	X		2,000
3SR	X		Several 1,000
Roquefort'in		X	4,000
Genomia		X	2,600
Genovicap	Engineering on genomics		

Genomic selection: which project for which breed?

Breed	Purpose
Lacaune (2010-2013)	Setting up a training population up to 3,000 rams. Experimenting GS on 2 batches of progeny-test and comparing EBV and GEBV with official proofs.
Red and Black Manech / Blond and Black Latxa. Basco- Béarnaise. (2010-2012)	Setting up a training population up to 1,000 rams in Red Manech. Testing across-breed GEBV approach

Consequences on the breeding schemes

Expected **higher efficiency** (select elite sires very early) of selection to be oriented towards:

- Either speeding up selection on actual routinely recorded traits
- >Or implementing selection on new traits
- Or reducing costs (removing progeny-test of Al rams and reducing total number of Al rams)
- ➤Or (more probably) mixing the 3 objectives

Consequences on the breeding schemes

Evolution of the organization of the breeding schemes

- ➤ What new management of AI rams without progeny-testing
- ➤ Which size of the open nucleus population, with official performance recording?

Optimize breeding schemes with genomics, re-organize engineering, take into account genomic data in the information system

Conclusion

- > French dairy sheep breeds : efficient on classical phenotypic selection.
- > PrP gene and selection for scrapie resistance : a success story
- > Strong demand for new traits
- Favorable context to introduce genomic data in the breeding programs, with great expectations of the breeders' organizations
 - ➤ Bustling period with several on-going projects with a strong implication of the breeding organizations : exciting and structuring challenge
 - ➤ Key factor to succeed the challenge: favorable economic context and sustainable breeding system implying all the stakeholders of the breed.

EAAP Annual Meeting 2010,

Heraklion, Crete Island (Greece)

23-27 August 2010

Genetic Improvement of Dairy Sheep in France: Results and Prospects

Jean-Michel Astruc,

Gilles Lagriffoul, Hélène Larroque, Francis Barillet