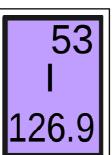
lodine supplementation with iodinized salt in dairy cows: effects on iodine concentration in milk and blood plasma

Vincent Robaye, Emilie Knapp, Olivier
Dotreppe, Jean-Luc Hornick, Louis Istasse and
Isabelle Dufrasne
Nutrition Unit, Animal Production
Department, Veterinary Faculty,
University of Liege, Belgium

Iodine.


Trace element of importance.

production of thyroid hormones.

in the basal metabolism in the development of organs

Milk: source of iodine for consumers.

f.e. up to 50% of the requirements.

 lodine content is low in locally produced feedstuffs.

Requirements: 0.4 - 0.8 mg/kg DM grazed grass n=39 0.24 mg/kg DM grass silage n=11 0.26 mg/kg DM maize silage n=3 0.09 mg/kg DM

 Aims: assess the effects of iodinized salt on iodine content in milk and blood plasma

 Materials Two groups of 24 cows Similar mixed diet grass silage 5.8 kg DM maize silage 5.8 kg DM compound feedstuff 9 kg

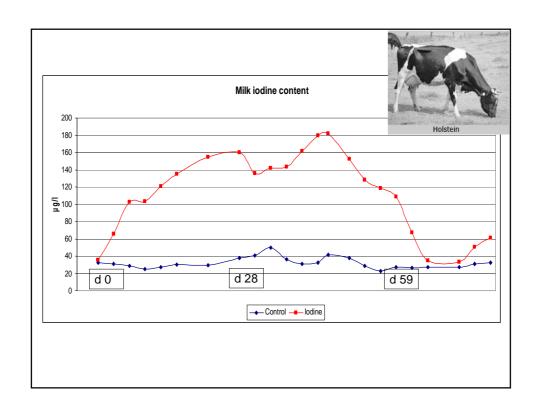
Soja bean meal (0.225), barley (0.225), sugar beet pulps (0.225), bran (0.225), deshydrated lucerne (0.10)

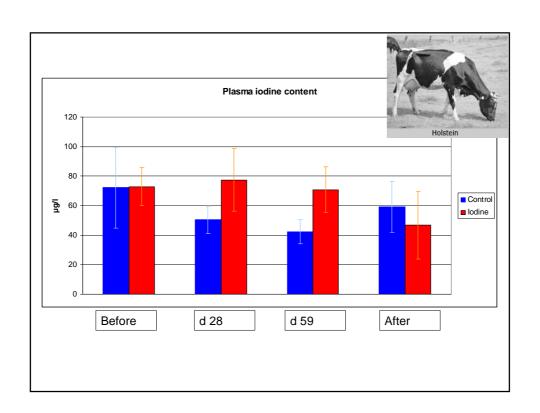
No iodine in the teat dip

Periods	Control group	Iodinized group		
Before	50g salt			
d1 – d59	100g salt + 5mg Se	100g salt + 50mg I + 5mg Se		
After	100g salt + 5mg Se	100g salt + 5mg Se		
Content				
Iodine	0.3 mg/kg DM	0.3 + 2.5 = 2.8mg/kg DM		
Selenium	50 + 250 = 300mg/kg DM	50 + 250 = 300mg/kg DM		
lodine was supplemented as potassium iodide				

Measurements

- lodine in milk from the tank
- Iodine in plasma of 2 x 10 cows
- Milk yield and composition







Results Milk: no effects

		Control	Iodinized
		group	group
Before	Yield kg	30.8	
	Fat g/I	43.5	
	Prot g/l	33.6	
d1 – d59	Yield kg	26.8	26.2
	Fat g/I	42.2	42.0
	Prot g/l	32.4	32.6
After	Yield kg	25.7	25.2
	Fat g/l	41.6	41.5
	Prot g/I	32.5	32.7

Conclusion

- lodine supplemented as potassium iodide at a rate of 50mg I per day largely increased iodine content in milk.
- Milk could therefore be considered as a product with added value for the consumers