

Assessment of structural and mechanical properties of equine cortical bone with several techniques

A.C. Vale¹, M.J. Fradinho², N. Bernardes², M.F.C. Pereira³, A. Maurício³, P.M. Amaral¹, G. Ferreira-Dias², M.F. Vaz¹

 ¹ Instituto Superior Técnico (IST), UTL, Lisboa, Portugal
 ² C.I.I.S.A., Faculdade de Medicina Veterinária, UTL, Pólo Universitário da Ajuda, Lisboa, Portugal
 ³ Centro de Petrologia e Geoquímica, IST, UTL, Lisboa, Portugal

The horse skeleton its subjected to considerable loading and strengths

IMPORTANT

To understand the structure, the architecture and the mechanical properties of the equine bone tissue

 \Rightarrow AIM – to evaluate the mechanical and structural properties of <u>equine</u> <u>third metacarpal bone</u> in the Lusitano horse

Mechanical properties:

✓ uniaxial compression tests

Structural properties:

✓ scanning electron microscopy (SEM) ⇒ 2D structural analysis

(SEM is coupled with an energy dispersive x-ray spectroscopy (EDS) ⇒ chemical analysis)

✓ Micro Computorized Tomography (micro-CT) ⇒ 3D structural analysis

J Samples

taken *post mortem* from the third metacarpal bone (MC III), of *Lusitano* horses

□ on the dorsal and lateral regions of the bone

□cubic specimens were cut, wrapped in gauze soaked in physiologic saline solution and stored.

Samples used in SEM were mounted in a resin, polished and coated with gold.

 ⇒ Field emission scanning electron
 microscope JEOL, JSM-7001F
 ⇒ coupled with an energy dispersive xray spectroscopy (EDS) detector Oxford

- Dorsal and lateral
- transversal and longitudinal sections

Micro computed tomography (micro-CT) analysis was undertaken with a Skyscan 1172

S **Presults from mechanical compression tests**

SEM results

Lateral- transversal section 250x

 Dorsal – transversal section
 \$50x

 Image: Contrast of the section of the sect

Haversian canals

Porosity - Areas were measured using commercial image analysis software (SigmaScan Pro 5)

Results : Dorsal – Transversal – 2.03±0.52 %; Dorsal – Longitudinal – 2.66±0.84 %;

Lateral – Transversal – 2.36±0.59 %; Lateral – Longitudinal – 2.11±0.95 %;

Literature – porosity – 1-30%

EDS results: Ca = 34.4 ±3.9; P=16.3 ±2.2; O=35.4 ±2.5; C=14 ±3.6 (weight %)

分 Conclusions

- Preliminary results were shown
- •The techniques used were found to be adequate to fulfil the objectives of the work

•Further tests will contribute for the establishment of the relationship between structure and mechanical properties.

Speed of Sound (SOS) - related to the mechanical properties of the medium by:

$$SOS_{Dorsal/Lateral}(m/s) = \sqrt{\frac{E}{\rho_{bone}}}$$

 $m{E}$ – Young's modulus (or elasticity modulus) $m{
ho}$ - density

(Carstangen et al., 2002)

QUS provides an indication of both <u>the elasticity</u> and <u>bone mineral density</u> of the superficial cortical bone.

Thank you!