Faculty of Agricultural and Nutritional Science

CAU

Christian-Albrechts-University Kiel Institute of Animal Breeding and Husbandry

Session 36 nkemper@tierzucht. uni-kiel.de

Birds as source of important bacterial pathogens in sows in outdoor production

N. Kemper, I. Ziegler

Institute of Animal Breeding and Husbandry Christian-Albrechts-University Kiel, Germany

EAAP Meeting 2010, Heraklion, Crete Island, Greece

Introduction

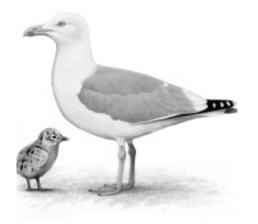
Pigs in outdoor production

- ⇒ increasing demand for organic pork
- ⇒ 1% of all sows in Germany in outdoor production
- ⇒ pros and cons with regard to infectious diseases:

infection risk \mathbb{Q}	infection risk
low animal density	inadequate hygiene
reduction of stress	easy introduction of pathogens
more roughage	restricted treatment

Introduction

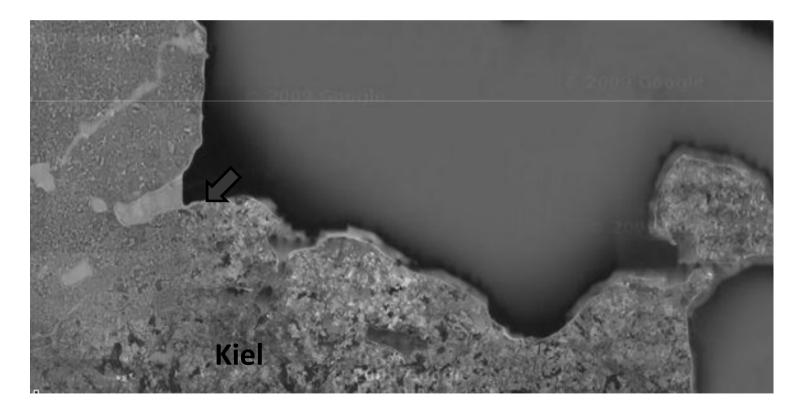
Pigs in outdoor production


⇒ food safety and zoonoses risks! i. e. bacterial pathogens

⇒ pros and cons with regard to infectious diseases:

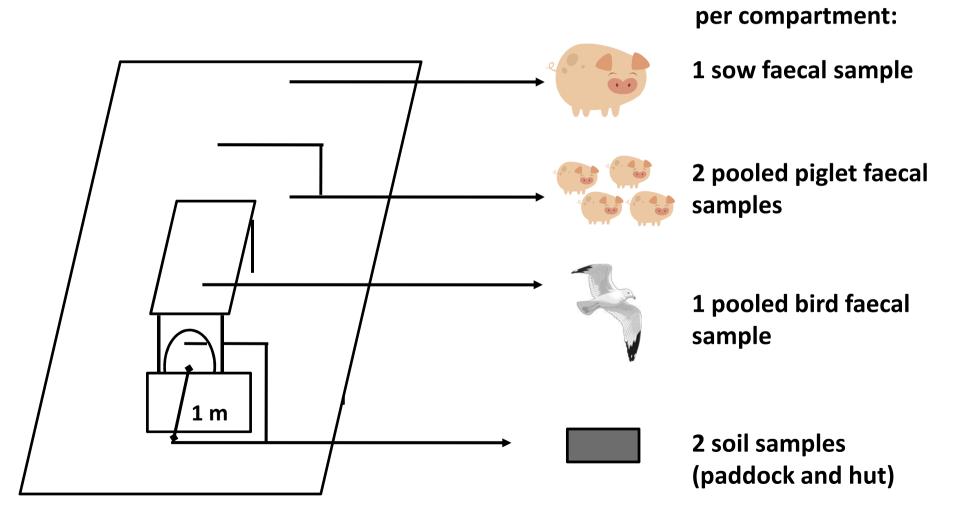
infection risk \clubsuit	infection risk ①
low animal density	inadequate hygiene
reduction of stress	easy introduction of pathogens
more roughage	restricted treatment

Aims of the project


- ⇒ birds a source of important bacteria in outdoor pig production?
- qualitative assessment of the bacterial spectrum in outdoor piglet rearing
- ⇒ analysis of possible routes of infection

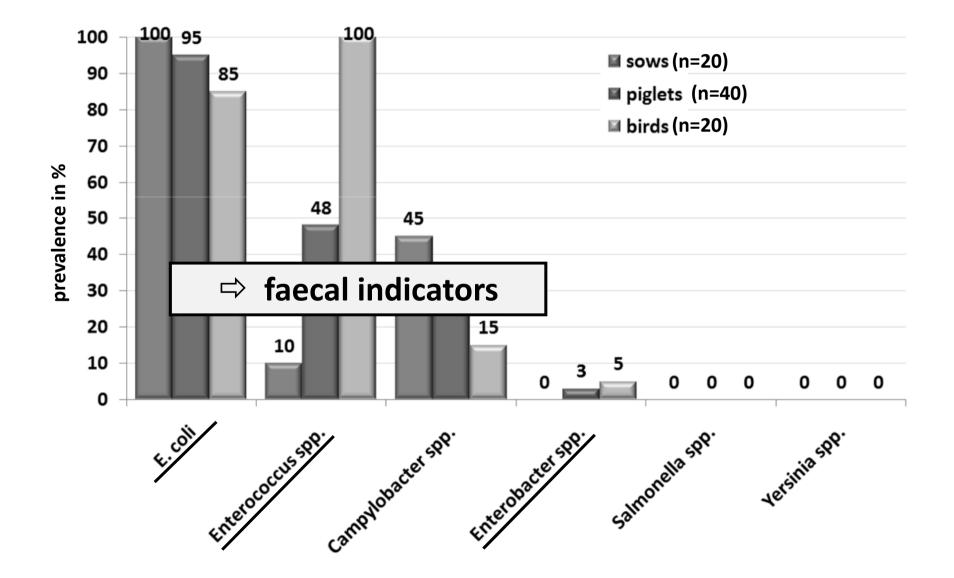
Seagulls (Larus spp.)

Sampling


⇒ research farm Lindhof, 50 sows in organic outdoor production

(google maps 2010)

Sampling


⇒ 5 compartments, 4 sampling dates, 120 samples

Bacteriology

- ⇒ *Escherichia coli,* especially Shigatoxin producing *E. coli* (STEC)
- ⇒ *Campylobacter* spp.
- ⇒ Salmonella spp.
- ⇒ Yersinia spp.
- bacteriological analysis with different media and API identification systems, molecular techniques (PCR) and testing for antibiotic resistance

Faecal samples from pigs and birds

Campylobacter spp. differentiation

⇒ multiplex-PCR (Wang *et al*. 2010)

samples	n	C. coli	C. jejuni	C. lari	C. upsalienis	C. spp.
SOWS	20	5 (25%)	-	-	-	4 (20%)
piglets	40	11 (27.5%)	-	-	-	-
birds	20	-	1 (5%)	1 (5%)	1 (5%)	-
paddocks	20	-	-	-	-	-
huts	20	1 (5%)	-	-	-	-

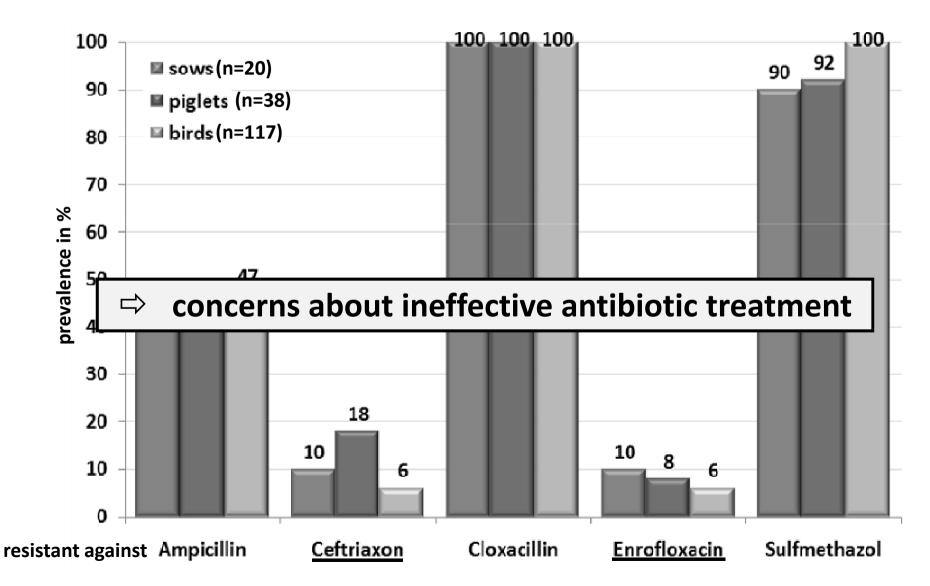
⇒ two separate *Campylobacter*-cycles:

pigs - *C. coli* birds - *C. jejuni, C. lari* and *C. upsaliensis*

Shigatoxin producing Escherichia coli (STEC)

⇒ PCR for genes encoding Shigatoxin 1, Shigatoxin 2, Intimin and Haemolysin (Menrath et al. 2010)

<i>E. coli</i> isolates	n	stx1	stx2	eae	hly	eae+hly
SOWS	20	-	-	-	-	-
piglets	38	1 (2.6%)	-	1 (2.6%)	-	1 (2.6%)
birds	17	-	-	2 (11.8%)	-	-
paddocks	20	2 (10%)	-	-	-	-
huts	20	2 (10%)	-	-	-	-


⇒ no STEC with full virulence profile

Escherichia coli antibiotic resistance

 ⇒ resistance testing against Ampicillin, Ceftriaxon, Cloxacillin, Doxycyclin, Enrofloxacin, Streptomycin, Sulfmethaxol and Tetracyclin

E. coli isolates	n	sensitive	single-resistant	multi-resistant
sows	20	-	1 (5%)	19 (95%)
piglets	38	-	-	38 (100%)
birds	17	-	-	17 (100%)
paddocks	20	1 (5%)	-	19 (95%)
huts	20	-	-	20 (100%)
total	115	1 (0.9%)	1 (0.9%)	113 (98.3%)

Resistant Escherichia coli-isolates in faecal samples

Birds as risk for outdoor pig production?

- ⇒ different Campylobacter spp. in pigs and birds
 in accordance with other studies (Alter *et al.* 2005; Jones 2001; Moore *et al.* 2002)
- ⇒ no STEC-strains, no *Salmonella* spp., no *Yersinia* spp.
- ⇒ multi-resistant *Escherichia coli* present in all samples

⇒ in this study, birds do not pose a risk to pigs' or consumers' health

Zoonotic pathogens in outdoor production

- ⇒ food safety aspects should not be neglected even though they are inconsistent with the public image of organic livestock production
- ⇒ thorough analysis of possible risks
- ⇒ proper communication

⇒ prevent setbacks in animal welfare improvement

Farm

Key figures

-

age at 1. occupancy	300 d
conception rate after 1. occupancy	50%
abortions after 5. week of gestation	3%
weaning-hogging-interval	5 d
return-to-heat-rate	35%
piglets' weaning age	6 weeks
born piglets per sow	12.7
rate of stillborn piglets	13.8%
rate of crushed piglets	16.8%
weaned piglets per sow	8.8